BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p...BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities....In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities.The results indicated that encapsulating naringin in microspheres delayed its digestion in the stomach,allowing more release in the intestinal part.All kinds of yogurt were solid-like in nature and the addition of microspheres increased the elastic modulus and viscosity.The naringin and microspheres incorporation enhanced the total phenolic content of the yogurt to 6.7 and 8.8 mg of gallic acid equivalent/mL,respectively.All kinds of yogurt demonstrated more than 80%scavenging ability for hydroxyl radicals at 20μL whey/mL.The addition of microspheres improved the DPPH radical scavenging ability of yogurt.This study provides a new idea for the application of polyphenols in food and the development of functional yogurt.展开更多
Ingestion of microplastics by various organisms has been widely evidenced.Chemicals associated with microplastics(MPs)may be released to digestive tracts upon ingestion.However,the effect of aging and temperature on t...Ingestion of microplastics by various organisms has been widely evidenced.Chemicals associated with microplastics(MPs)may be released to digestive tracts upon ingestion.However,the effect of aging and temperature on the chemical desorption for MPs remains poorly understood.The exposure of polyethylene(PE)particles to UV radiation in dry air,tap water,and sea water was conducted to mimic the aging process of MPs in different environments.Polychlorinated biphenyls(PCBs),as a typical hydrophobic organic contaminant,were preloaded in these aged and pristine PE.The desorption was performed by exposing preloaded PE particles in simulated gastric and gut fluids at 25℃and 40℃.After UV aging,the average diameter of PE particles decreased rapidly with aging time,indicating continuously fragmentation of PE under UV exposure.The desorption of PCBs from PE particles under different conditions varied from 7%to 40%,and that from aged PE in gut fluid at 37℃was significantly higher than those under other conditions(P<0.05).Furthermore,a clear declining trend was observed as lg K_(ow)(octanol-water partition coefficient)value increased.The aging process,hydrophobicity of chemicals,and incubation temperature were important factors on the desorption of PCBs from PE.The present study helps understand the desorption of PCBs from microplastics and the potential risks of microplastics ingestion by organisms.展开更多
The high melting point element W and the rare earth element Ce were added to 18Cr-Mo(444-type)ferritic stainless steel to improve its high-temperature oxidation resistance in exhaust gas.A simulated exhaust gas was fi...The high melting point element W and the rare earth element Ce were added to 18Cr-Mo(444-type)ferritic stainless steel to improve its high-temperature oxidation resistance in exhaust gas.A simulated exhaust gas was filled in the simultaneous thermal analyzer to simulate the service environment,and the oxidation behavior in high-temperature exhaust gas environment of 444-type ferritic stainless steel alloyed with W and Ce was investigated.The oxide structure and composition formed in this process were analyzed and characterized by scanning electron microscopy/energy-dispersive spectroscopy and electron probe analysis,and the mechanism of W and Ce in the oxidation process was revealed.The results show that 18Cr-Mo ferritic stainless steel containing W and Ce has better oxidation resistance in high-temperature exhaust gas.The element W can promote the precipitation of Laves phase at the matrix/interface,inhibit the interface diffusion of oxidizing elements and prevent the inward growth of the oxide film.The element Ce can suppress the volume of SiO_(2)at the oxide film/interface,reducing the breakaway oxidation caused by cracking of the oxide film.The CeO_(2)provides nucleation sites for oxide particles,promoting the healing of cracks and voids within the oxide film.展开更多
Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus o...Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.展开更多
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosacchari...The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosaccharides(o-HAs)and the gut microbiome remain largely unexplored.To investigate its role and metabolic fate in gut homeostasis,200 mg/day of o-HAs(average molecule weight 1 kDa)were added to an automated computer-controlled SIMulator of the Gastrointestinal tract(SIMGI).The results revealed a significant reshaping of the intestinal flora composition by o-HAs,notably reducing the Firmicutes/Bacteroides ratio.Fermentation of o-HAs by gut microbiota significantly increased the abundance of Bifidobacterium,Prevotellaceae_Prevotella,Dialister,Eubacterium,and Sutterella,but decreased that of Catenibacterium,Oscillospira,Klebsiella,and Citrobacter(P<0.05).This corresponded with significant enhancements in the content of short-chain fatty acids(SCFAs)such as acetic acid,propionic acid and n-butyric acid,highlighting the significant impact of o-HAs at the genus level.Furthermore,analysis of microbial function predicted the downregulation of pathological events in nine human diseases,particularly infectious ones(parasitic and bacterial).Potential inhibitions were observed in metabolic pathways associated with pentose and glucuronate interconversions as well as cationic antimicrobial peptide resistance.These findings underscore the in vitro prebiotic effects of o-HAs and their potential relevance in managing diverticular diseases or preventing metabolic disorders through the regulation of gut microbiota.展开更多
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru...To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.展开更多
The effects of hydrostatic pressure, dissolved oxygen, temperature and flow velocity, and their interaction on the corrosion rates of E690 high-strength steel (HSS) in simulated marine environments were studied using ...The effects of hydrostatic pressure, dissolved oxygen, temperature and flow velocity, and their interaction on the corrosion rates of E690 high-strength steel (HSS) in simulated marine environments were studied using response surface methodology. The results show that the flow velocity exerts the most significant influence on the corrosion rate of E690 HSS. Consequently, the corrosion behavior of E690 HSS under varying flow velocities were analyzed profoundly from initial pitting corrosion to long-term corrosion properties. The results indicate that the flow state facilitates the mass transfer and enhances the adsorption tendency of Cl− by enhancing the electrochemical activity of the steel surface. These factors accelerate the electrochemical reactions, resulting in increased pitting density, depth and the long-term corrosion rates in dynamic seawater environments.展开更多
Fatigue and tensile behaviors of homogenized WE 54 magnesium alloy before and after immersion in simulated body fluid(SBF)were investigated.According to the tensile test,the alloy without immersion in SBF solution has...Fatigue and tensile behaviors of homogenized WE 54 magnesium alloy before and after immersion in simulated body fluid(SBF)were investigated.According to the tensile test,the alloy without immersion in SBF solution has the highest tensile strength of 278 MPa,which decreased to 190 MPa after 336 h of immersion..The fatigue life of the homogenized WE 54 magnesium alloy before immersion in the SBF solution under a constant stress of 15 MPa is 3598 cycles.However,the fatigue life of the alloy decreased to 453 cycles after 336 h of immersion in the SBF solution under the same stress.Examination of the fracture surface of the samples by SEM reveals that the origin of the fatigue crack before immersion is micro-pores and defects.While corrosion pits and cracks are the main reasons for forming the initial fatigue crack after immersion.Moreover,the results obtained from practical work were evaluated and compared to theoretical calculations.The area of the hysteresis loops of the samples after the fatigue test,determined using Triangles and Monte Carlo methods,decreased from 4954.5 MPa and 4842.9 MPa before immersion to 192.0 MPa and 175.8 MPa after 336 h of immersion,respectively.展开更多
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle ...Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.展开更多
The simulated patient methodology(SPM)is considered the“gold standard”as covert participatory observation.SPM is attracting increasing interest for the investigation of community pharmacy practice;however,there is c...The simulated patient methodology(SPM)is considered the“gold standard”as covert participatory observation.SPM is attracting increasing interest for the investigation of community pharmacy practice;however,there is criticism that SPM can only show a small picture of everyday pharmacy practice and therefore has limited external validity.On the one hand,a certain design and application of the SPM goes hand in hand with an increase in external validity.Even if,on the other hand,this occurs at the expense of internal validity due to the trade-off situation,the justified criticism of the SPM for investigating community pharmacy practice can be countered.展开更多
Objective: To explore the application of Deliberate Practice-based simulated teaching in clinical teaching of medical nursing. Methods: 160 undergraduate student nurses were divided into the experimental group (80) an...Objective: To explore the application of Deliberate Practice-based simulated teaching in clinical teaching of medical nursing. Methods: 160 undergraduate student nurses were divided into the experimental group (80) and the control group (80) by using the convenience sampling method. Both groups were exposed to staged nurse core competence training. In the control group, standardized patients were employed for training, after which group discussion and oral presentation were included;in the experimental group, teaching was designed based on Deliberate Practice, wherein high-fidelity simulation system was used and video-assisted guiding feedback after training was involved. Results: After four teaching cycles, the nurse core competence score of the experimental group was significantly higher than that of the control group (P Conclusion: Deliberate Practice-based simulated learning can effectively improve clinical teaching performance of medical nursing.展开更多
With the rapid development of modern medical education,traditional teaching methods are unable to meet the needs and have obvious limitations.In this situation,simulation teaching,as an innovative teaching method,has ...With the rapid development of modern medical education,traditional teaching methods are unable to meet the needs and have obvious limitations.In this situation,simulation teaching,as an innovative teaching method,has gradually become a focus in the educational practice of diagnosis and internal medicine,demonstrating irreplaceable advantages.Simulated teaching is a teaching strategy that involves the careful design and guidance of a mentor,role-playing,entering a special context constructed by the mentor,using professional teaching equipment,and reproducing real medical scenes in a simulated environment.Simulation teaching,as an effective alternative method,has gradually become increasingly important in the field of medical education,receiving widespread attention and application,and has become an important way to solve current teaching problems.展开更多
To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa...To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential.展开更多
To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte...To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.展开更多
文摘BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金funded by the People’s Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)the Department of Education of Liaoning Province(Natural Science,Strategic Industrialization Project,LJ212410163061)the Liaoning Province College Students Innovation and Entrepreneurship Training Program(S202410163077).
文摘In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities.The results indicated that encapsulating naringin in microspheres delayed its digestion in the stomach,allowing more release in the intestinal part.All kinds of yogurt were solid-like in nature and the addition of microspheres increased the elastic modulus and viscosity.The naringin and microspheres incorporation enhanced the total phenolic content of the yogurt to 6.7 and 8.8 mg of gallic acid equivalent/mL,respectively.All kinds of yogurt demonstrated more than 80%scavenging ability for hydroxyl radicals at 20μL whey/mL.The addition of microspheres improved the DPPH radical scavenging ability of yogurt.This study provides a new idea for the application of polyphenols in food and the development of functional yogurt.
基金Supported by the National Natural Science Foundation of China(No.21936004)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP208)the Fundamental Research Funds for the Central Universities(No.21623118)。
文摘Ingestion of microplastics by various organisms has been widely evidenced.Chemicals associated with microplastics(MPs)may be released to digestive tracts upon ingestion.However,the effect of aging and temperature on the chemical desorption for MPs remains poorly understood.The exposure of polyethylene(PE)particles to UV radiation in dry air,tap water,and sea water was conducted to mimic the aging process of MPs in different environments.Polychlorinated biphenyls(PCBs),as a typical hydrophobic organic contaminant,were preloaded in these aged and pristine PE.The desorption was performed by exposing preloaded PE particles in simulated gastric and gut fluids at 25℃and 40℃.After UV aging,the average diameter of PE particles decreased rapidly with aging time,indicating continuously fragmentation of PE under UV exposure.The desorption of PCBs from PE particles under different conditions varied from 7%to 40%,and that from aged PE in gut fluid at 37℃was significantly higher than those under other conditions(P<0.05).Furthermore,a clear declining trend was observed as lg K_(ow)(octanol-water partition coefficient)value increased.The aging process,hydrophobicity of chemicals,and incubation temperature were important factors on the desorption of PCBs from PE.The present study helps understand the desorption of PCBs from microplastics and the potential risks of microplastics ingestion by organisms.
基金the joint financial support from the National Natural Science Foundation of China and Baowu Group Co.,Ltd.(Grant No.U1660205)the Fundamental Research Funds for the Central Universities(Grant No.N2007001).
文摘The high melting point element W and the rare earth element Ce were added to 18Cr-Mo(444-type)ferritic stainless steel to improve its high-temperature oxidation resistance in exhaust gas.A simulated exhaust gas was filled in the simultaneous thermal analyzer to simulate the service environment,and the oxidation behavior in high-temperature exhaust gas environment of 444-type ferritic stainless steel alloyed with W and Ce was investigated.The oxide structure and composition formed in this process were analyzed and characterized by scanning electron microscopy/energy-dispersive spectroscopy and electron probe analysis,and the mechanism of W and Ce in the oxidation process was revealed.The results show that 18Cr-Mo ferritic stainless steel containing W and Ce has better oxidation resistance in high-temperature exhaust gas.The element W can promote the precipitation of Laves phase at the matrix/interface,inhibit the interface diffusion of oxidizing elements and prevent the inward growth of the oxide film.The element Ce can suppress the volume of SiO_(2)at the oxide film/interface,reducing the breakaway oxidation caused by cracking of the oxide film.The CeO_(2)provides nucleation sites for oxide particles,promoting the healing of cracks and voids within the oxide film.
基金supported by the National Key R&D Program of China(2022YFD1401600)the National Science Foundation for Distinguished Young Scholars of Zhejang Province,China(LR23C140001)supported by the Key Area Research and Development Program of Guangdong Province,China(2018B020205003 and 2020B0202090001).
文摘Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
基金financially supported by the National Natural Science Foundation of China(32000058)the Fundamental Research Funds for the Central Universities(JUSRP622003)。
文摘The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosaccharides(o-HAs)and the gut microbiome remain largely unexplored.To investigate its role and metabolic fate in gut homeostasis,200 mg/day of o-HAs(average molecule weight 1 kDa)were added to an automated computer-controlled SIMulator of the Gastrointestinal tract(SIMGI).The results revealed a significant reshaping of the intestinal flora composition by o-HAs,notably reducing the Firmicutes/Bacteroides ratio.Fermentation of o-HAs by gut microbiota significantly increased the abundance of Bifidobacterium,Prevotellaceae_Prevotella,Dialister,Eubacterium,and Sutterella,but decreased that of Catenibacterium,Oscillospira,Klebsiella,and Citrobacter(P<0.05).This corresponded with significant enhancements in the content of short-chain fatty acids(SCFAs)such as acetic acid,propionic acid and n-butyric acid,highlighting the significant impact of o-HAs at the genus level.Furthermore,analysis of microbial function predicted the downregulation of pathological events in nine human diseases,particularly infectious ones(parasitic and bacterial).Potential inhibitions were observed in metabolic pathways associated with pentose and glucuronate interconversions as well as cationic antimicrobial peptide resistance.These findings underscore the in vitro prebiotic effects of o-HAs and their potential relevance in managing diverticular diseases or preventing metabolic disorders through the regulation of gut microbiota.
基金Funded by the National Natural Science Foundation of China (Nos. 52278269, 52278268, 52178264, 52108238)Tianjin Outstanding Young Scholars Science Fund Project (No. 22JCJQJC00020)State Key Laboratory of Green Building Materials Open Foundation (No. 2021GBM08)。
文摘To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.
基金supported by the National Natural Science Foundation of China(Nos.U20A20279 and 51601137)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process(No.Y202207).
文摘The effects of hydrostatic pressure, dissolved oxygen, temperature and flow velocity, and their interaction on the corrosion rates of E690 high-strength steel (HSS) in simulated marine environments were studied using response surface methodology. The results show that the flow velocity exerts the most significant influence on the corrosion rate of E690 HSS. Consequently, the corrosion behavior of E690 HSS under varying flow velocities were analyzed profoundly from initial pitting corrosion to long-term corrosion properties. The results indicate that the flow state facilitates the mass transfer and enhances the adsorption tendency of Cl− by enhancing the electrochemical activity of the steel surface. These factors accelerate the electrochemical reactions, resulting in increased pitting density, depth and the long-term corrosion rates in dynamic seawater environments.
文摘Fatigue and tensile behaviors of homogenized WE 54 magnesium alloy before and after immersion in simulated body fluid(SBF)were investigated.According to the tensile test,the alloy without immersion in SBF solution has the highest tensile strength of 278 MPa,which decreased to 190 MPa after 336 h of immersion..The fatigue life of the homogenized WE 54 magnesium alloy before immersion in the SBF solution under a constant stress of 15 MPa is 3598 cycles.However,the fatigue life of the alloy decreased to 453 cycles after 336 h of immersion in the SBF solution under the same stress.Examination of the fracture surface of the samples by SEM reveals that the origin of the fatigue crack before immersion is micro-pores and defects.While corrosion pits and cracks are the main reasons for forming the initial fatigue crack after immersion.Moreover,the results obtained from practical work were evaluated and compared to theoretical calculations.The area of the hysteresis loops of the samples after the fatigue test,determined using Triangles and Monte Carlo methods,decreased from 4954.5 MPa and 4842.9 MPa before immersion to 192.0 MPa and 175.8 MPa after 336 h of immersion,respectively.
基金supported by the Fundamental Research Funds for the Central Universities(2023JC004 and 2023YQ002)。
文摘Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.
文摘The simulated patient methodology(SPM)is considered the“gold standard”as covert participatory observation.SPM is attracting increasing interest for the investigation of community pharmacy practice;however,there is criticism that SPM can only show a small picture of everyday pharmacy practice and therefore has limited external validity.On the one hand,a certain design and application of the SPM goes hand in hand with an increase in external validity.Even if,on the other hand,this occurs at the expense of internal validity due to the trade-off situation,the justified criticism of the SPM for investigating community pharmacy practice can be countered.
文摘Objective: To explore the application of Deliberate Practice-based simulated teaching in clinical teaching of medical nursing. Methods: 160 undergraduate student nurses were divided into the experimental group (80) and the control group (80) by using the convenience sampling method. Both groups were exposed to staged nurse core competence training. In the control group, standardized patients were employed for training, after which group discussion and oral presentation were included;in the experimental group, teaching was designed based on Deliberate Practice, wherein high-fidelity simulation system was used and video-assisted guiding feedback after training was involved. Results: After four teaching cycles, the nurse core competence score of the experimental group was significantly higher than that of the control group (P Conclusion: Deliberate Practice-based simulated learning can effectively improve clinical teaching performance of medical nursing.
文摘With the rapid development of modern medical education,traditional teaching methods are unable to meet the needs and have obvious limitations.In this situation,simulation teaching,as an innovative teaching method,has gradually become a focus in the educational practice of diagnosis and internal medicine,demonstrating irreplaceable advantages.Simulated teaching is a teaching strategy that involves the careful design and guidance of a mentor,role-playing,entering a special context constructed by the mentor,using professional teaching equipment,and reproducing real medical scenes in a simulated environment.Simulation teaching,as an effective alternative method,has gradually become increasingly important in the field of medical education,receiving widespread attention and application,and has become an important way to solve current teaching problems.
基金supported by the Jiangsu Provincial College Students Innovation andEntrepreneurship Training Plan Project(grant number 202411276037Z)the Nanjing Institute ofTechnology Fund for Research Startup Projects of Introduced Talents(grant number TB202406012).
文摘To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential.
基金support provided by the National Natural Science Foundation of China(Grant No.52362055)the Science and Technology Plan Project of Guangxi Zhuang Autonomous Region(Grant No.2021AC19334)Guangxi Science and Technology Major Program(Grant No.AA23062053).
文摘To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.