The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their prac...The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.展开更多
Two new lunar mare soil simulants,NAO-2 and NAO-3,have been created in National Astronomical Observatories(NAO),Chinese Academy of Sciences.These two simulants were produced from low-titanium basalt and high-titanium ...Two new lunar mare soil simulants,NAO-2 and NAO-3,have been created in National Astronomical Observatories(NAO),Chinese Academy of Sciences.These two simulants were produced from low-titanium basalt and high-titanium basalt respectively.The chemical composition,mineralogy, particle size distribution,density,angle of internal friction,and cohesion of both simulants have been analyzed,indicating that some characteristics of NAO-2 and NAO-3 are similar to those of Apollo 14 and Apollo 11 landing site soils.NAO-2 and NAO-3 will be of great benefit to the scientific and engineering research on lunar soil.展开更多
In this review, we summaries the past few year work on the chemistry of CWA’s and their simulants on various heterogeneous surfaces of zeolites, composites of zeolites and doped zeolite with transition metal oxides. ...In this review, we summaries the past few year work on the chemistry of CWA’s and their simulants on various heterogeneous surfaces of zeolites, composites of zeolites and doped zeolite with transition metal oxides. This review elaborates an updated literature overview on the degradation of CWA’s and its simulants. The data written in this review were collected from the peer-reviewed national and international literature.展开更多
Chemical warfare agents(CWAs)can cause significant harm to health and even death in a very short time even when inhaled in small amounts(~100 mg min/m^(3)).Detection equipment based on conventional techniques,includin...Chemical warfare agents(CWAs)can cause significant harm to health and even death in a very short time even when inhaled in small amounts(~100 mg min/m^(3)).Detection equipment based on conventional techniques,including gas chromatography-mass spectrometry,Raman spectroscopy,fluorescence spectroscopy,and ion mobility spectrometry,have the disadvantages of high cost,long detection time,and high power consumption.Rapid,portable,and convenient equipment for target CWAs detection under interference is a challenge.In this study,we propose an alarm system comprising a multitype micro sensor array and a field-programmable gate array-based readout circuit for CWAs simulants detection.Under common volatile organic compound,temperature,and water vapor interference,the proposed multitype sensor-based detection system realizes an alarm function in less than 20 s with thresholds of 1 ppm dimethyl methylphosphonate(DMMP),4.6 ppm 2,2'-dichlorodiethyl ether(DCE),and 20 ppm SO_(2).Furthermore,the proposed detection system was evaluated outside the laboratory and passed the wilderness test,demonstrating its reliability in the atmosphere.We believe that the proposed alarm system will contribute to the development of intelligent,portable,low-cost,and anti-interference CWAs detection technology.展开更多
Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl m...Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.展开更多
Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomizati...Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action. Periodic wave-like structures observed from the near impingement point and atomized droplets were observed at a location further downstream.展开更多
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl...Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen...Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst...This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.展开更多
Conventional surgical teaching techniques face several challenges,highlighting a necessity for ongoing innovation in ophthalmology education to align with the evolving demands of clinical practice.The recent rapid adv...Conventional surgical teaching techniques face several challenges,highlighting a necessity for ongoing innovation in ophthalmology education to align with the evolving demands of clinical practice.The recent rapid advancement of computer technology has enabled the integration of virtual reality(VR)into medical training,thereby revolutionizing ophthalmic surgical education through VRbased educational methods.VR technology offers a safe,risk-free environment for trainees to practice repeatedly,enhancing surgical skills and accelerating the learning curve without compromising patient safety.This research outlines the application of VR technology in ophthalmic surgical skills training,particularly in cataract and vitreoretinal surgery.Including assessing the effectiveness of intraocular surgery training systems,evaluating skills transfer to the operating room,comparing it with wet lab cataract surgery training,and enhancing non-dominant hand training for cataract surgery,among other aspects.Additionally,this paper will identify the limitations of VR technology in ocular surgical skills training,offer improvement strategies,and detail the advantages and prospects,with the objective of guiding subsequent researchers.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Access to clean drinking water is essential for human health,economic development,and environmental sustain-ability.To effectively preserve water quality and ensure a safe and stable water supply,it is essential to de...Access to clean drinking water is essential for human health,economic development,and environmental sustain-ability.To effectively preserve water quality and ensure a safe and stable water supply,it is essential to determine the priority control factors of potentially hazardous elements in water.This study focused on public drinking wa-ter fountains in Zaječar City(Serbia),examining water hydrochemistry,quality,potential sources of hazardous elements,and the health risks associated with consumption or dermal exposure.Among all potentially hazardous elements,iron showed a deviation from the limit in drinking water prescribed by the World Health Organization,reaching 631μg/L.However,all samples were categorized as excellent quality for drinking.Water composition was governed by water-rock interactions,distinguishing Na-HCO_(3)as the dominant water type.A total of 3.3%and 6.6%of samples exceeded the threshold of 1 for non-carcinogenic health risk for adults and children,re-spectively,with the mean HIa value of 0.35 and the mean HIc value of 0.57.However,the carcinogenic risk was within the allowable limits for children,whereas it surpassed the threshold of 1.0×10^(–4)for adults in 10%of the samples.The positive matrix factorization model identified four sources responsible for water quality,i.e.,natural source,industrial source,sewage source,and agricultural source,with contributions of 37.1%,35.0%,17.8%,and 10.1%,respectively.The Monte Carlo simulation of source-specific health risks revealed that the industrial source was the main contributor to both non-carcinogenic and carcinogenic risks,attributed to its high arsenic load.展开更多
Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging tec...Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging technology.However,NGD measurements are influenced by both neutron and gamma radiations.In the logging environment,variations in the formation composition indicate different elemental compositions,which affect the neutron-gamma reaction cross-sections and gamma generation.Compared to traditional gamma sources such as Cs-137,these changes significantly affect the generation and transport of neutron-induced inelastic gamma rays and hinder accurate measurements.To address this,a novel method is proposed that incorporates the mass attenuation coefficient function to account for the effects of various lithologies and pore contents on gamma-ray attenuation,thereby achieving more accurate density measurements by clarifying the transport processes of inelastic gamma rays with varying energies and spatial distributions in varied logging environments.The proposed method avoids the complex correction of neutron transport and is verified through Monte Carlo simulations for its applicability across various lithologies and pore contents,demonstrating absolute density errors that are less than 0.02 g/cm^(3)in clean formations and indicating good accuracy.This study clarifies the NGD mechanism and provides theoretical guidance for the application of NGD logging methods.Further studies will be conducted on extreme environmental conditions and tool calibration.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.82104065,32061143045,22276142,22474003)the National Key Research&Development Program(Nos.2019YFE0123100,2022YFE0199800)+2 种基金Anhui Provincial Natural Science Foundation(No.2208085MB38)Anhui Provincial Natural Science Foundation for Distinguished Young Scholars(No.2008085J11)Foundation of Education Department of Anhui Province(No.2022AH010023).
文摘The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.
基金supported by The National High Technology Research and Development Program of China(No.2008AA 12A213)The National Key Scientific and Technologic Project
文摘Two new lunar mare soil simulants,NAO-2 and NAO-3,have been created in National Astronomical Observatories(NAO),Chinese Academy of Sciences.These two simulants were produced from low-titanium basalt and high-titanium basalt respectively.The chemical composition,mineralogy, particle size distribution,density,angle of internal friction,and cohesion of both simulants have been analyzed,indicating that some characteristics of NAO-2 and NAO-3 are similar to those of Apollo 14 and Apollo 11 landing site soils.NAO-2 and NAO-3 will be of great benefit to the scientific and engineering research on lunar soil.
文摘In this review, we summaries the past few year work on the chemistry of CWA’s and their simulants on various heterogeneous surfaces of zeolites, composites of zeolites and doped zeolite with transition metal oxides. This review elaborates an updated literature overview on the degradation of CWA’s and its simulants. The data written in this review were collected from the peer-reviewed national and international literature.
基金supported by the National Natural Science Foundation of China(Grant Nos.61671368,62174130)Basic Public Welfare Research Planning Project of Zhejiang Province(Grant No.LGG19F040002)+2 种基金the Science and Technology Program of Shaanxi Province(Grant No.2021GY-061)the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,National Defense Foundation of China(Grant Nos.2022-JCJQ-JJ-1099,2022-JCJQ-JJ-1108)the Fundamental Research Funds for the Central Universities。
文摘Chemical warfare agents(CWAs)can cause significant harm to health and even death in a very short time even when inhaled in small amounts(~100 mg min/m^(3)).Detection equipment based on conventional techniques,including gas chromatography-mass spectrometry,Raman spectroscopy,fluorescence spectroscopy,and ion mobility spectrometry,have the disadvantages of high cost,long detection time,and high power consumption.Rapid,portable,and convenient equipment for target CWAs detection under interference is a challenge.In this study,we propose an alarm system comprising a multitype micro sensor array and a field-programmable gate array-based readout circuit for CWAs simulants detection.Under common volatile organic compound,temperature,and water vapor interference,the proposed multitype sensor-based detection system realizes an alarm function in less than 20 s with thresholds of 1 ppm dimethyl methylphosphonate(DMMP),4.6 ppm 2,2'-dichlorodiethyl ether(DCE),and 20 ppm SO_(2).Furthermore,the proposed detection system was evaluated outside the laboratory and passed the wilderness test,demonstrating its reliability in the atmosphere.We believe that the proposed alarm system will contribute to the development of intelligent,portable,low-cost,and anti-interference CWAs detection technology.
基金sponsored by the Department of Defense,Defense Threat Reduction Agency under the Materials Science in Extreme Environments University Research Alliance,HDTRA1-20-2-0001。
文摘Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.
基金(Grants No. 00040486) was supported by Business for Cooperative R&D between Industry, AcademyResearch Institute funded Korea Small and Medium Business Administration in 2010
文摘Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action. Periodic wave-like structures observed from the near impingement point and atomized droplets were observed at a location further downstream.
文摘Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金financially supported by the National Natural Science Foundation of China(52130109)。
文摘Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
基金the National Natural Science Foundation of China(No.U23A20322)the National Key Research and Development Program of China(Nos.2023YFF0719600,2021YFA1202600,and 2021YFB4000800)+4 种基金the CAS Project for Young Scientists in Basic Research(No.YSBR-113)the Ningbo Technology Project(No.2022A-007-C)the Hunan Provincial Natural Science Foundation(Nos.2023JJ50009,2025JJ60351,and 2023JJ30599)the Foundation of Innovation Center of Radiation Application(No.KFZC2023020701)the Major Scientific and Technological Innovation Platform Project of Hunan Province(No.2024JC1003).
文摘This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.
基金Supported by the Key Special Project of“Cutting-Edge Biotechnology”in the National Key Research and Development Program of China(No.2024YFC3406200)Sanming Project of Medicine in Shenzhen(No.SZSM202411007)Shenzhen Science and Technology Program(No.JCYJ20240813152704006).
文摘Conventional surgical teaching techniques face several challenges,highlighting a necessity for ongoing innovation in ophthalmology education to align with the evolving demands of clinical practice.The recent rapid advancement of computer technology has enabled the integration of virtual reality(VR)into medical training,thereby revolutionizing ophthalmic surgical education through VRbased educational methods.VR technology offers a safe,risk-free environment for trainees to practice repeatedly,enhancing surgical skills and accelerating the learning curve without compromising patient safety.This research outlines the application of VR technology in ophthalmic surgical skills training,particularly in cataract and vitreoretinal surgery.Including assessing the effectiveness of intraocular surgery training systems,evaluating skills transfer to the operating room,comparing it with wet lab cataract surgery training,and enhancing non-dominant hand training for cataract surgery,among other aspects.Additionally,this paper will identify the limitations of VR technology in ocular surgical skills training,offer improvement strategies,and detail the advantages and prospects,with the objective of guiding subsequent researchers.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-136/2025-03/200135)。
文摘Access to clean drinking water is essential for human health,economic development,and environmental sustain-ability.To effectively preserve water quality and ensure a safe and stable water supply,it is essential to determine the priority control factors of potentially hazardous elements in water.This study focused on public drinking wa-ter fountains in Zaječar City(Serbia),examining water hydrochemistry,quality,potential sources of hazardous elements,and the health risks associated with consumption or dermal exposure.Among all potentially hazardous elements,iron showed a deviation from the limit in drinking water prescribed by the World Health Organization,reaching 631μg/L.However,all samples were categorized as excellent quality for drinking.Water composition was governed by water-rock interactions,distinguishing Na-HCO_(3)as the dominant water type.A total of 3.3%and 6.6%of samples exceeded the threshold of 1 for non-carcinogenic health risk for adults and children,re-spectively,with the mean HIa value of 0.35 and the mean HIc value of 0.57.However,the carcinogenic risk was within the allowable limits for children,whereas it surpassed the threshold of 1.0×10^(–4)for adults in 10%of the samples.The positive matrix factorization model identified four sources responsible for water quality,i.e.,natural source,industrial source,sewage source,and agricultural source,with contributions of 37.1%,35.0%,17.8%,and 10.1%,respectively.The Monte Carlo simulation of source-specific health risks revealed that the industrial source was the main contributor to both non-carcinogenic and carcinogenic risks,attributed to its high arsenic load.
基金supported by the National Natural Science Foundation of China(U23B20151 and 52171253).
文摘Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging technology.However,NGD measurements are influenced by both neutron and gamma radiations.In the logging environment,variations in the formation composition indicate different elemental compositions,which affect the neutron-gamma reaction cross-sections and gamma generation.Compared to traditional gamma sources such as Cs-137,these changes significantly affect the generation and transport of neutron-induced inelastic gamma rays and hinder accurate measurements.To address this,a novel method is proposed that incorporates the mass attenuation coefficient function to account for the effects of various lithologies and pore contents on gamma-ray attenuation,thereby achieving more accurate density measurements by clarifying the transport processes of inelastic gamma rays with varying energies and spatial distributions in varied logging environments.The proposed method avoids the complex correction of neutron transport and is verified through Monte Carlo simulations for its applicability across various lithologies and pore contents,demonstrating absolute density errors that are less than 0.02 g/cm^(3)in clean formations and indicating good accuracy.This study clarifies the NGD mechanism and provides theoretical guidance for the application of NGD logging methods.Further studies will be conducted on extreme environmental conditions and tool calibration.