This paper explores the synchronization of stochastic simplicial complexes with noise,modeled by stochastic differential equations of It?type.It establishes the relationship between synchronization and individual dyna...This paper explores the synchronization of stochastic simplicial complexes with noise,modeled by stochastic differential equations of It?type.It establishes the relationship between synchronization and individual dynamics,higher-order structures,coupling strengths,and noise.In particular,this study delves into the role of multi-body interactions,particularly focusing on the influence of higher-order simplicial structures on the overall synchronization behavior.Furthermore,the effects of noise on synchronizability in the stochastic simplicial complex are thoroughly examined.The obtained results indicate that the effects of noise on the synchronizability vary with the manner in which noise propagates.The presence of noise can regulate the synchronization pattern of the simplicial complex,transforming the unstable state into a stable state,and vice versa.These findings offer valuable insights and a theoretical foundation for improving the performance of real-world networks,such as communication networks,biological systems,and social networks,where noise is often inevitable.展开更多
Rapid diagnosis of rice bacterial diseases is critical for early warning and precise management during their initial phases.The use of rapid nucleic acid detection on paper-based platforms is an innovative technique t...Rapid diagnosis of rice bacterial diseases is critical for early warning and precise management during their initial phases.The use of rapid nucleic acid detection on paper-based platforms is an innovative technique that offers simplicity,portability,and affordability.However,the temperature dependence of the amplification process and variations in paper device technologies hinder on-site detection of pathogens using paper-based platforms.展开更多
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.62473284,61973064,62203327)Hebei Natural Science Foundation(Grant No.F2022501024)。
文摘This paper explores the synchronization of stochastic simplicial complexes with noise,modeled by stochastic differential equations of It?type.It establishes the relationship between synchronization and individual dynamics,higher-order structures,coupling strengths,and noise.In particular,this study delves into the role of multi-body interactions,particularly focusing on the influence of higher-order simplicial structures on the overall synchronization behavior.Furthermore,the effects of noise on synchronizability in the stochastic simplicial complex are thoroughly examined.The obtained results indicate that the effects of noise on the synchronizability vary with the manner in which noise propagates.The presence of noise can regulate the synchronization pattern of the simplicial complex,transforming the unstable state into a stable state,and vice versa.These findings offer valuable insights and a theoretical foundation for improving the performance of real-world networks,such as communication networks,biological systems,and social networks,where noise is often inevitable.
基金supported by the National Natural Science Foundation of China(Grant No.32171895)National Key Research and Development Program for Young Scientists,China(Grant No.2022YFD2000200)Jiangsu Province Key Reserch and Development Program Project,China(Grant No.BE2022052-2).
文摘Rapid diagnosis of rice bacterial diseases is critical for early warning and precise management during their initial phases.The use of rapid nucleic acid detection on paper-based platforms is an innovative technique that offers simplicity,portability,and affordability.However,the temperature dependence of the amplification process and variations in paper device technologies hinder on-site detection of pathogens using paper-based platforms.