期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cracking of silty mudstone subjected to wetting-drying cycles
1
作者 Xiaowei Yu Hongyuan Fu +3 位作者 Ling Zeng Guijin Zhang Hongri Zhang Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4195-4210,共16页
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This... Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles. 展开更多
关键词 silty mudstone Wetting-drying cycles Brazilian test DIC(digital image correlation)method Crack evolution Cracking behaviors
在线阅读 下载PDF
Shearing Characteristics of Jurassic Silty Mudstone Slip Zone under Different Water Contents and Normal Stresses Based on Ring Shear Tests
2
作者 Nang Mon Mon Thaw Changdong Li +4 位作者 Zongxing Zou Wenqiang Chen Jingjing Long Aung Min Oo Dafalla Wadi 《Journal of Earth Science》 2025年第2期654-667,共14页
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m... Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding. 展开更多
关键词 silty mudstone slip zone water content normal stress drained ring shear test residual shear strength engineering geolgoy
原文传递
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:14
3
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部