期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Study on Pressure⁃Sensitive Properties of Carbon Fiber Powder Reinforced Lime⁃Improved Silty Sand 被引量:1
1
作者 Lixia Wang Zilin Hu +1 位作者 Qing Wang Yunlong Zhang 《Journal of Harbin Institute of Technology(New Series)》 2025年第2期14-23,共10页
This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curi... This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications. 展开更多
关键词 lime⁃improved silty sand CFP unconfined compressive strength RESISTIVITY pressure⁃sensitivity
在线阅读 下载PDF
Experimental study on low temperature triaxial shear of sulfate saline silty clay in Hexi area of Gansu
2
作者 ZhiYi Liu Yu Song FengXi Zhou 《Research in Cold and Arid Regions》 2025年第2期110-126,共17页
In order to explore the mechanical properties and microstructure changes of frozen saline silty clay in the Hexi region of Gansu Province,triaxial compression tests and scanning electron microscopy(SEM)analysis experi... In order to explore the mechanical properties and microstructure changes of frozen saline silty clay in the Hexi region of Gansu Province,triaxial compression tests and scanning electron microscopy(SEM)analysis experiment were conducted to explore the effects of moisture content,confining pressure,and temperature on the stress-strain characteristics and failure modes of frozen soil,as well as the changes in the internal microstructure of the sample.The experimental results show that the strength of frozen sulfate saline soil first increases and then decreases with the increase of moisture content,and the maximum strength corresponds to a moisture content of 15%.The changes in confining pressure and strength have the same trend.The lower the temperature,the greater the strength of the sample.During the entire loading process,the specimens undergo a gradual transition from volume shrinkage to volume expansion.Due to the strain harden behavior of the stress-strain curve throughout the entire loading process,the failure mode of the specimens is plastic failure.The internal microstructure of the sample gradually transitions from point-point contact and edge-point contact before shearing to edge-surface contact and edge-edge contact after shearing,and the pore size inside the sample increases after shearing,with a loose arrangement of the particle skeleton.The above research conclusions can lay a certain theoretical foun-dation for the engineering design and construction of sulfate saline soil in cold and arid areas. 展开更多
关键词 Frozen sulfate saline silty clay STRESS-STRAIN STRENGTH Strain hardening Microstructure
在线阅读 下载PDF
Mechanical and water stability properties of biopolymer-treated silty sand
3
作者 Dianzhi Feng Bing Liang +4 位作者 Yong Wan Fu Yi Lei Liu Yi Zhang Xingxing He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3910-3924,共15页
The soil construction materials cured with biopolymers are gradually being recognized and widely used in engineering areas,such as roadbeds or foundation fills.The strength of biopolymer-solidified soils(BSS)is easily... The soil construction materials cured with biopolymers are gradually being recognized and widely used in engineering areas,such as roadbeds or foundation fills.The strength of biopolymer-solidified soils(BSS)is easily influenced by the change of internal residual moisture content(RMC),however,the quantitative relationship between them remains unclear.Xanthan gum,as a representative of biopolymer,was used in this study to enhance the mechanical properties of silty sand dredged from the Yellow River under different initial water contents and curing temperatures.The unconfined compressive strength(UCS),curing time,water stability and microscopic properties of BSS were investigated via a series of indoor experiments.Results show that the proposed method for quantitatively evaluating the BSS strength using different RMC values was found to be workable compared to that of the traditional cement-treated method under different curing ages.The curing time required for BSS to reach a certain target strength,i.e.2900 kPa,is reduced to 9.3 h at a higher curing temperature of 90℃.Moreover,BSS exhibits the“self-healing”properties of strength recovery after re-temperature drying,with a strength recovery ratio above 45%.The control raw soil samples completely disintegrate in water within 10 s,and even lower xanthan gum biopolymer dosages,such as 0.5%,improved stability in water by reducing permeability by sealing the internal voids of the soil.SEM results indicate that the initial water content and curing temperature mainly affect the distribution of effective xanthan gum linkages,and thus significantly improve the strength and water stability of BSS. 展开更多
关键词 Mechanical strength silty sand BIOPOLYMER Residual moisture content(RMC) Water stability
在线阅读 下载PDF
Cracking of silty mudstone subjected to wetting-drying cycles
4
作者 Xiaowei Yu Hongyuan Fu +3 位作者 Ling Zeng Guijin Zhang Hongri Zhang Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4195-4210,共16页
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This... Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles. 展开更多
关键词 silty mudstone Wetting-drying cycles Brazilian test DIC(digital image correlation)method Crack evolution Cracking behaviors
在线阅读 下载PDF
Dynamic deformation characteristics and microscopic analysis of xanthan gum-treated silty soil during wetting process
5
作者 Junran Zhang Mengyi Jia +4 位作者 Tong Jiang Shoji Kato De'an Sun You Gao Zheng Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1149-1162,共14页
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin... The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin. 展开更多
关键词 Xanthan gum Unsaturated silty soil dynamic deformation characteristics Scanning electron microscope Water retention characteristics
在线阅读 下载PDF
Shearing Characteristics of Jurassic Silty Mudstone Slip Zone under Different Water Contents and Normal Stresses Based on Ring Shear Tests
6
作者 Nang Mon Mon Thaw Changdong Li +4 位作者 Zongxing Zou Wenqiang Chen Jingjing Long Aung Min Oo Dafalla Wadi 《Journal of Earth Science》 2025年第2期654-667,共14页
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m... Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding. 展开更多
关键词 silty mudstone slip zone water content normal stress drained ring shear test residual shear strength engineering geolgoy
原文传递
Performance of composite foundations with different load transfer platforms and substratum stiffness over silty clay
7
作者 ZHANG Shuming LIU Yan +3 位作者 YUAN Shengyang LIU Xianfeng JIANG Guanlu LIU Junyan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1761-1774,共14页
The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis... The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions. 展开更多
关键词 Centrifuge modelling Composite foundation Failure mode Load transfer platform SUBSTRATUM STIFFNESS silty clay
原文传递
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
8
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
在线阅读 下载PDF
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:14
9
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
在线阅读 下载PDF
Failure Envelopes of Wide-Shallow Composite Bucket Foundation for Offshore Wind Turbines in Silty Sand 被引量:6
10
作者 Yonggang Liu Yaohua Guo +1 位作者 Hongyan Ding Puyang Zhang 《Transactions of Tianjin University》 EI CAS 2018年第2期182-190,共9页
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and cos... The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load. 展开更多
关键词 Wide-shallow COMPOSITE BUCKET FOUNDATION silty sand Off SHORE wind turbines
在线阅读 下载PDF
Experimental Study on Suspended Sediment Concentration and Its Vertical Distribution under Spilling Breaking Wave Actions in Silty Coast 被引量:5
11
作者 夏云峰 徐华 +2 位作者 陈中 吴道文 张世钊 《China Ocean Engineering》 SCIE EI 2011年第4期565-575,共11页
In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissi... In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement. 展开更多
关键词 silty sand breaking wave energy dissipation suspended sediment concentration vertical distribution
在线阅读 下载PDF
Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction 被引量:5
12
作者 T.Shenthan R.Nashed +1 位作者 S.Thevanayagam G.R.Martin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期39-50,共12页
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti... The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils. 展开更多
关键词 liquefaction mitigation silty soils composite stone columns dynamic compaction
在线阅读 下载PDF
Vertical Diffusion Coefficient with Stratification Effect for Silty Sediment Suspension Under Waves 被引量:3
13
作者 YANG Guang-yao ZHANG Qing-he 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期323-332,共10页
To analyze previous experimental data of suspended sediment concentration for silty sediment with different sediment particle sizes due to waves, a new stratification correction coefficient is presented. The suspended... To analyze previous experimental data of suspended sediment concentration for silty sediment with different sediment particle sizes due to waves, a new stratification correction coefficient is presented. The suspended sediment concentration gradient and sediment particle diameter are selected as parameters. Furthermore, a diffusion coefficient model with a stratification effect over the whole water depth for silty sediment suspension under waves is developed. The comparison between the suspended sediment concentration calculated by the presented model and several groups of experimental data shows that the model can reasonably reflect the vertical distribution of silty sediment suspension.The stratification effect calculated by the present model decreases with an increase in the sediment particle diameter,which indicates that the model can be extended to describe the suspended sediment concentration of fine to medium sand when the near-bottom sediment concentration is not very high. Although the original model needs to be iteratively solved, the approximate method without iteration is recommended for applications when the near bottom sediment concentration is between 10 and 20 kg/m~3 due to the small difference between the non-iterative and iterative solution for near bed layer suspended sediment concentration, which plays a major role in sediment transport. 展开更多
关键词 STRATIFICATION silty sediment suspension diffusion coefficient WAVE
在线阅读 下载PDF
Experimental study on mechanical properties of basalt fiber-reinforced silty clay 被引量:3
14
作者 JIA Yu ZHANG Jia-sheng +3 位作者 WANG Xuan DING Yu CHEN Xiao-bin LIU Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1945-1956,共12页
Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperfo... Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperformance soil reinforcement material,and the mechanical properties of basalt fiber-reinforced soil have become a hot research topic.In this paper,we conducted monotonic triaxial and cyclic triaxial tests,and analyzed the influence of the fiber content,moisture content,and confining pressure on the shear characteristics,dynamic modulus,and damping ratio of basalt fiber-reinforced silty clay.The results illustrate that basalt fiber can enhance the shear strength of silty clay by increasing its cohesion.We find that the shear strength of reinforced silty clay reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%(optimum moisture content).Similarly,we also find that the dynamic modulus that corresponds to the same strain first increases then decreases with increasing fiber content and moisture content and reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%.The dynamic modulus is positively correlated with the confining pressure.However,the change in the damping ratio with fiber content,moisture content,and confining pressure is opposite to that of the dynamic modulus.It can be concluded that the optimum content of basalt fiber for use in silty clay is 0.2%.After our experiments,we used scanning electron microscope(SEM)to observe the microstructure of specimens with different fiber contents,and our results show that the gripping effect and binding effect are the main mechanisms of fiber reinforcement. 展开更多
关键词 basalt fiber-reinforced silty clay shear behavior dynamic modulus damping ratio optimum fiber content
在线阅读 下载PDF
Influence of repeated freeze-thaw on dynamic modulus and damping ratio properties of silty sand 被引量:4
15
作者 TianLiang Wang Chao Ma +1 位作者 Han Yan JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第5期572-576,共5页
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm... Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level. 展开更多
关键词 freeze-thaw cycles silty sand dynamic modulus damping ratio
在线阅读 下载PDF
Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay 被引量:2
16
作者 Shaimaa T.Kadhum Ghayda Yassen Alkindi Talib M.Albayati 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期19-28,共10页
The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanopartic... The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanoparticle zerovalent iron was synthesized using natural silty clay as a support material(SC-NZVI).The NZVI and SC-NZVI were characterized by infrared spectroscopy(FTIR),scanning electron microscope(SEM),X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET),and zeta potential(ζ).The interpretation of the results demonstrated that the polyphenol and other antioxidants in green tea waste can be used as reduction and capping agents in NZVI synthesis,with silty clay an adequate support.Additionally,the experiments were carried out to explore phenol adsorption by NZVI and SC-NZVI.To determine the optimum conditions,the impact of diverse experimental factors(i.e.,initial pH,adsorbent dose,temperature,and concentration of phenol)was studied.Langmuir,Freundlich,and Tempkin isotherms were used as representatives of adsorption equilibrium.The obtained results indicated that the adsorption processes for both NZVI and SC-NZVI well fitted by the Freundlich isotherm model.The appropriateness of pseudofirstorder and pseudosecondorder kinetics was investigated.The experimental kinetics data were good explained by the second-order model.The thermodynamic parameters(ΔH0,ΔS0,andΔG0)for NZVI and SC-NZVI were determined.The maximum removal rates of phenol at optimum conditions,when adsorbed onto NZVI and SC-NZVI,were found to be 94.8%and 90.1%,respectively. 展开更多
关键词 Wastewater treatment Environment Nano zero-valent iron silty clay PHENOL Adsorption
在线阅读 下载PDF
Experimental study on the wave pressure of liquefied silty soil 被引量:2
17
作者 HUANG Zhe XU Guo-hui +1 位作者 MENG Qing-sheng WANG Gang 《Marine Science Bulletin》 CAS 2016年第1期29-42,共14页
A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed... A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed at varying wave heightsunder both conditions of liquefied and stable seabed. The total pressures equal to soilpressures and pore water pressures were measured and analyzed at each depth. Theresults showed that the liquefied seabed had little difference from the stable seabed onthe peak pressures. However, the pressure amplitude of the liquefied soil increased byseveral to 10 times and decreased faster with increasing soil depths, compared with thestable soil. According to the experiments and further analysis, an empirical equationbetween pressure amplitude of the liquefied soil and wave parameters was put forwardunder the flume test. The results provide a valuable reference for engineeringapplications. 展开更多
关键词 silty soil wave pressure LIQUEFACTION water flume test
在线阅读 下载PDF
Studies on batch adsorptive removal of cadmium and nickel from synthetic waste water using silty clay originated from Balochistan-Pakistan 被引量:1
18
作者 Abdul Samad Muhammad Imran Din Mahmood Ahmed 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1171-1176,共6页
The potentials of silty clay(SC),acquired from Chaman,Balochistan,were investigated as adsorbent for Ni(Ⅱ)and Cd(Ⅱ)removal from contaminated media.The influence of different operating factors like dose,pH,temperatur... The potentials of silty clay(SC),acquired from Chaman,Balochistan,were investigated as adsorbent for Ni(Ⅱ)and Cd(Ⅱ)removal from contaminated media.The influence of different operating factors like dose,pH,temperature,and time of contact was explored,and optimum values were noted under batch adsorption method.Isothermal study was conducted with varying concentrations of solutions on optimized conditions and different adsorption models i.e.,Langmuir,Freundlich,Temkin and Dubinin-Radushkevich(D-R)isotherm,which were employed to interpret the process.The isothermal data of both Ni(Ⅱ)and Cd(Ⅱ)were well fitted to Langmuir isotherm suggesting the formation of monolayer of metal ions on silty clay.The values of adsorption capacity noted for Ni(Ⅱ)and Cd(Ⅱ)were 3.603 mg·g^-1 and 5.480 mg·g^-1,respectively.Kinetic studies affirmed that pseudo second order(PSO)kinetics was being obeyed by the removal of Ni(Ⅱ)and Cd(Ⅱ).Thermodynamic variables like free energy change(ΔG°),enthalpy change(ΔH°)and entropy change(ΔS°)were calculated.The negative value ofΔG°and the positive values ofΔH°andΔS°unfolded that the removal process of both metal ions of by SC was spontaneous,endothermic and feasible. 展开更多
关键词 Adsorption Kinetics ISOTHERM Toxicity silty clay THERMODYNAMICS
在线阅读 下载PDF
Frost-heave properties of saturated compacted silty clay under one-side freezing condition 被引量:1
19
作者 Hong Yan Ma Feng Zhang +1 位作者 De Cheng Feng Kang Wei Tang 《Research in Cold and Arid Regions》 CSCD 2017年第3期273-279,共7页
In seasonally frozen regions,the frost-heave properties of soil play a significant role in its upper-structure performance and durability.To investigate the frost-heave behaviors of saturated,compacted silty clay soil... In seasonally frozen regions,the frost-heave properties of soil play a significant role in its upper-structure performance and durability.To investigate the frost-heave behaviors of saturated,compacted silty clay soil widely used as subgrade material,a series of one-side freezing tests was carried out;and the freezing depth and frozen front effected by the compactness,temperature,overburden pressure,and water-supply condition were analyzed and discussed.The results show that the moving speed of the frozen front and growth rate of the frozen depth are positively correlated.The frost heave is maximum in the frost-heave stability condition.The frost ratio of saturated soil is proportional to the water supply and cooling temperature under a one-side freezing condition.The frost ratio of saturated soil is inversely proportional to the initial compactness of the soil specimen and the overburden pressure. 展开更多
关键词 seasonally FROZEN regions saturated silty CLAY soil FROST HEAVE FREEZING front factor-sensitivity analysis
在线阅读 下载PDF
Lateral displacement of silty clay under cement-fly ash-gravel pile-supported embankments: Analytical consideration and field evidence 被引量:5
20
作者 张崇磊 蒋关鲁 +1 位作者 刘先峰 王智猛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1477-1489,共13页
Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme... Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen. 展开更多
关键词 piled-supported embankment silty clay lateral displacement field test stress concentration ratio
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部