期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrated Optical True Time Delay Phased Array Antenna Systems 被引量:1
1
作者 Qi Zihang Yang Linhui +1 位作者 Zhao Wenyu Li Xiuping 《China Communications》 2025年第5期152-172,共21页
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p... The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed. 展开更多
关键词 microwave photonics optical switch optical true time delay phased array antenna siliconbased integration
在线阅读 下载PDF
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
2
作者 Shun-Li Jiang Tian-Yi Jiang +8 位作者 Yong-Qiang Xu Rui Wu Tian-Yue Hao Shu-Kun Ye Ran-Ran Cai Bao-Chuan Wang Hai-Ou Li Gang Cao Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期139-143,共5页
Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation.To satisfy the connectivity requirements and reduce the lithographic com... Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation.To satisfy the connectivity requirements and reduce the lithographic complexity,utilizing the qubit array structure and the circuit quantum electrodynamics(cQED)architecture together is expected to be a feasible scaling scheme.A triple-quantum dot(TQD)coupled with a superconducting resonator is regarded as a basic cell to demonstrate this extension scheme.In this article,we investigate a system consisting of a silicon TQD and a high-impedance TiN coplanar waveguide(CPW)resonator.The TQD can couple to the resonator via the right double-quantum dot(RDQD),which reaches the strong coupling regime with a charge–photon coupling strength of g0/(2p)=175 MHz.Moreover,we illustrate the high tunability of the TQD through the characterization of stability diagrams,quadruple points(QPs),and the quantum cellular automata(QCA)process.Our results contribute to fostering the exploration of silicon-based qubit integration. 展开更多
关键词 triple-quantum dot strong coupling circuit quantum electrodynamics(cQED) scalable siliconbased cQED architectures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部