Conventional electronic processors,which are the mainstream and almost invincible hardware for computation,are approaching their limits in both computational power and energy efficiency,especially in large-scale matri...Conventional electronic processors,which are the mainstream and almost invincible hardware for computation,are approaching their limits in both computational power and energy efficiency,especially in large-scale matrix computation.By combining electronic,photonic,and optoelectronic devices and circuits together,silicon-based optoelectronic matrix computation has been demonstrating great capabilities and feasibilities.Matrix computation is one of the few general-purpose computations that have the potential to exceed the computation performance of digital logic circuits in energy efficiency,computational power,and latency.Moreover,electronic processors also suffer from the tremendous energy consumption of the digital transceiver circuits during high-capacity data interconnections.We review the recent progress in photonic matrix computation,including matrix-vector multiplication,convolution,and multiply–accumulate operations in artificial neural networks,quantum information processing,combinatorial optimization,and compressed sensing,with particular attention paid to energy consumption.We also summarize the advantages of siliconbased optoelectronic matrix computation in data interconnections and photonic-electronic integration over conventional optical computing processors.Looking toward the future of silicon-based optoelectronic matrix computations,we believe that silicon-based optoelectronics is a promising and comprehensive platform for disruptively improving general-purpose matrix computation performance in the post-Moore’s law era.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
Photoelectrochemical(PEC)water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen.Nevertheless,achievement of high performance i...Photoelectrochemical(PEC)water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen.Nevertheless,achievement of high performance is often limited by charge carrier recombination,resulting in unsatisfactory saturation current densities.To address this challenge,we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper.The optimal photoanode(TCO/n-p-Si/TCO/Ni)shows a remarkably low onset potential of 0.92 V vs.a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm^(-2),which is about 92.7%of the theoretical maximum(42.7 mA·cm^(-2)).In addition,the photoanode demonstrates stable operation for 60 h.Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer,enhances catalytic performance,and provides corrosion protection to the underlying substrate.Notably,the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential.These findings provide a viable pathway for fabricating highperformance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer.展开更多
In the past half century,silicon-based microelectronics and optical fiber communication have triggered a far-reaching information technology revolution,which has moved human society into a high-speed information age.T...In the past half century,silicon-based microelectronics and optical fiber communication have triggered a far-reaching information technology revolution,which has moved human society into a high-speed information age.The demand for communication capacity and speed is growing exponentially.On the other hand,data center and high-performance computing are facing bottlenecks of speed,bandwidth,and energy consumption of electrical interconnections.展开更多
Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utiliz...Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries.展开更多
High-performance neuromorphic computing(i.e.,brain-like computing)is envisioned to seriously demand optoelectronically integrated artificial neural networks(ANNs)in the future.Optoelectronic synaptic devices are criti...High-performance neuromorphic computing(i.e.,brain-like computing)is envisioned to seriously demand optoelectronically integrated artificial neural networks(ANNs)in the future.Optoelectronic synaptic devices are critical building blocks for optoelectronically integrated ANNs.For the large-scale deployment of high-performance neuromorphic computing in the future,it would be advantageous to fabricate optoelectronic synaptic devices by using advanced silicon(Si)technologies.This calls for the development of Si-based optoelectronic synaptic devices.In this work we review the use of Si materials to make optoelectronic synaptic devices,which have either two-terminal or three-terminal structures.A series of important synaptic functionalities have been well mimicked by using these Si-based optoelectronic synaptic devices.We also present the outlook of using Si materials for optoelectronic synaptic devices.展开更多
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie...Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ...Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.展开更多
In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototra...In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototransistor is fabricated and measured,integrating a TiO_(2)nanolayer gate and a two-dimensional electron gas(2DEG)channel to mimic the synaptic weight and the synaptic cleft,respectively.The maximum drain to source current is 10 nA,while the device is driven at a reverse bias not exceeding-2.5 V.A excitatory postsynaptic current(EPSC)of 200 nA can be triggered by a 365 nm UVA light spike with the duration of 1 s at light intensity of 1.35μW·cm^(-2).Multiple synaptic neuromorphic functions,including EPSC,short-term/long-term plasticity(STP/LTP)and paried-pulse facilitation(PPF),are effectively mimicked by our GaN-based het-erostructure synaptic device.In the typical Pavlov’s dog experiment,we demonstrate that the device can achieve"retraining"process to extend memory time through enhancing the intensity of synaptic weight,which is similar to the working mecha-nism of human brain.展开更多
The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromo...The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromorphic comput-ing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence.Among various neuromorphic devices,the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consump-tion,multimodal sensing/recording capabilities,and multifunctional integration.Moreover,the emerging optoelectronic neuro-morphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neu-romorphic computing field.Therefore,this article reviews recent advancements in electrolyte-gated optoelectronic neuromor-phic transistors.First,it provides an overview of artificial optoelectronic synapses and neurons,discussing aspects such as device structures,operating mechanisms,and neuromorphic functionalities.Next,the potential applications of optoelectronic synapses in different areas such as artificial visual system,pain system,and tactile perception systems are elaborated.Finally,the current challenges are summarized,and future directions for their developments are proposed.展开更多
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and d...The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.展开更多
In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu...In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.展开更多
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt...High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.展开更多
Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to sy...Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to synthesize novel perovskites,while material-form-associated light management,which is crucial for enhancing the photodetector’s efficiency,is largely overlooked.Herein,we introduced surface light management strategy into DJ-type perovskite system by synthesizing surface-patterned BDAPbBr4(BPB,BDA=NH_(3)(CH_(2))_(4)NH_(3))microplates(MPs)using template-assisted space-confined method,which was further elucidated by theoretical optical simulation.By leveraging surface-patterned MPs to enhance light absorption,the BPB-based photodetectors(PDs)achieved remarkable photoresponse in ultraviolet region,marked by a high on/off ratio(~5000),superior responsivity(2.24 A W^(-1)),along with large detectivity(~10^(13) Jones)and low detection limit(68.7 nW cm^(-2)).Additionally,the PDs showcased superior light communication and imaging capabilities even under weak-light illumination.Notably,the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD.These results represented the first demonstration of BPB perovskite in weak-light communication and imaging,as well as in polarized light detection.Our findings offer valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies.展开更多
The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing area...The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.展开更多
With the vigorous development of Sino-foreign cooperative education,English teaching for specialized courses has become a crucial link in cultivating internationalized professionals.This paper takes the Optoelectronic...With the vigorous development of Sino-foreign cooperative education,English teaching for specialized courses has become a crucial link in cultivating internationalized professionals.This paper takes the Optoelectronic Information Science and Engineering(Sino-German Cooperation)major of the University of Shanghai for Science and Technology as the research object,and deeply analyzes the dilemmas faced by English teaching in this major,such as significant differences in students’English foundations,poor adaptability of teaching resources,and insufficient cultivation of cross-cultural communication skills.Based on this,a series of teaching reform strategies are proposed,covering aspects,such as optimizing teaching objectives,innovating curriculum settings,changing teaching methods,strengthening the construction of the teaching staff,and improving the teaching evaluation system.Specific teaching reform cases are also incorporated,aiming to improve the quality of English teaching for specialized courses and cultivate internationalized talents with solid professional knowledge and excellent English capabilities.展开更多
The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly ...The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
基金supported by the National Natural Science Foundation of China(62035001 and 61775005)。
文摘Conventional electronic processors,which are the mainstream and almost invincible hardware for computation,are approaching their limits in both computational power and energy efficiency,especially in large-scale matrix computation.By combining electronic,photonic,and optoelectronic devices and circuits together,silicon-based optoelectronic matrix computation has been demonstrating great capabilities and feasibilities.Matrix computation is one of the few general-purpose computations that have the potential to exceed the computation performance of digital logic circuits in energy efficiency,computational power,and latency.Moreover,electronic processors also suffer from the tremendous energy consumption of the digital transceiver circuits during high-capacity data interconnections.We review the recent progress in photonic matrix computation,including matrix-vector multiplication,convolution,and multiply–accumulate operations in artificial neural networks,quantum information processing,combinatorial optimization,and compressed sensing,with particular attention paid to energy consumption.We also summarize the advantages of siliconbased optoelectronic matrix computation in data interconnections and photonic-electronic integration over conventional optical computing processors.Looking toward the future of silicon-based optoelectronic matrix computations,we believe that silicon-based optoelectronics is a promising and comprehensive platform for disruptively improving general-purpose matrix computation performance in the post-Moore’s law era.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金supported by Multi-Year Research Grants from the University of Macao(MYRG-GRG2023-00010-IAPME,MYRG-GRG2024-00038-IAPME,MYRG2022-00026-IAPME)the Science and Technology Development Fund(FDCT)from Macao SAR(0023/2023/AFJ,0050/2023/RIB2,006/2022/ALC,0087/2024/AFJ,0111/2022/A2).
文摘Photoelectrochemical(PEC)water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen.Nevertheless,achievement of high performance is often limited by charge carrier recombination,resulting in unsatisfactory saturation current densities.To address this challenge,we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper.The optimal photoanode(TCO/n-p-Si/TCO/Ni)shows a remarkably low onset potential of 0.92 V vs.a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm^(-2),which is about 92.7%of the theoretical maximum(42.7 mA·cm^(-2)).In addition,the photoanode demonstrates stable operation for 60 h.Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer,enhances catalytic performance,and provides corrosion protection to the underlying substrate.Notably,the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential.These findings provide a viable pathway for fabricating highperformance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer.
文摘In the past half century,silicon-based microelectronics and optical fiber communication have triggered a far-reaching information technology revolution,which has moved human society into a high-speed information age.The demand for communication capacity and speed is growing exponentially.On the other hand,data center and high-performance computing are facing bottlenecks of speed,bandwidth,and energy consumption of electrical interconnections.
基金supported by the National Natural Science Foundation of China (51673017)the National Natural Science Foundation of China (21404005)+1 种基金the Fundamental Research Funds for the Central Universities (XK1802-2)the Natural Science Foundation of Jiangsu Province (BK20150273)。
文摘Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0205704 and 2018YFB2200101)the National Natural Science Foundation of China(Grant Nos.91964107 and 61774133)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2018XZZX003-02)the National Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Zhejiang University Education Foundation Global Partnership Fund.
文摘High-performance neuromorphic computing(i.e.,brain-like computing)is envisioned to seriously demand optoelectronically integrated artificial neural networks(ANNs)in the future.Optoelectronic synaptic devices are critical building blocks for optoelectronically integrated ANNs.For the large-scale deployment of high-performance neuromorphic computing in the future,it would be advantageous to fabricate optoelectronic synaptic devices by using advanced silicon(Si)technologies.This calls for the development of Si-based optoelectronic synaptic devices.In this work we review the use of Si materials to make optoelectronic synaptic devices,which have either two-terminal or three-terminal structures.A series of important synaptic functionalities have been well mimicked by using these Si-based optoelectronic synaptic devices.We also present the outlook of using Si materials for optoelectronic synaptic devices.
基金supported by the National Natural Science Foundation of China(62374150)Natural Science Foundation of Henan(242300421216)+3 种基金C.Zheng acknowledges the support of China Postdoctoral Science Foundation(Grant No.2023TQ0296)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232389)Y.Xie acknowledges the support of National Natural Science Foundation of China(62074011,62134008)Beijing Outstanding Young Scientist Program(JWZQ20240102009).
文摘Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the"Science and Technology Development Plan Project of Jilin Province,China"(Grant No.20240101018JJ)the Fundamental Research Funds for the Central Universities(Grant No.2412023YQ004)the National Natural Science Foundation of China(Grant Nos.52072065,52272140,52372137,and U23A20568).
文摘Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.
基金supported by the National Key R&D Program of China(2021YFB3601000,2021YFB3601004)the National Key R&D Program of China(2022YFB3604702)the Chinese Academy of Sciences.
文摘In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototransistor is fabricated and measured,integrating a TiO_(2)nanolayer gate and a two-dimensional electron gas(2DEG)channel to mimic the synaptic weight and the synaptic cleft,respectively.The maximum drain to source current is 10 nA,while the device is driven at a reverse bias not exceeding-2.5 V.A excitatory postsynaptic current(EPSC)of 200 nA can be triggered by a 365 nm UVA light spike with the duration of 1 s at light intensity of 1.35μW·cm^(-2).Multiple synaptic neuromorphic functions,including EPSC,short-term/long-term plasticity(STP/LTP)and paried-pulse facilitation(PPF),are effectively mimicked by our GaN-based het-erostructure synaptic device.In the typical Pavlov’s dog experiment,we demonstrate that the device can achieve"retraining"process to extend memory time through enhancing the intensity of synaptic weight,which is similar to the working mecha-nism of human brain.
基金supported by the Hunan Science Fund for Distinguished Young Scholars(2023JJ10069)the National Natural Science Foundation of China(52172169)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(ZZYJKT2024-02).
文摘The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromorphic comput-ing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence.Among various neuromorphic devices,the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consump-tion,multimodal sensing/recording capabilities,and multifunctional integration.Moreover,the emerging optoelectronic neuro-morphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neu-romorphic computing field.Therefore,this article reviews recent advancements in electrolyte-gated optoelectronic neuromor-phic transistors.First,it provides an overview of artificial optoelectronic synapses and neurons,discussing aspects such as device structures,operating mechanisms,and neuromorphic functionalities.Next,the potential applications of optoelectronic synapses in different areas such as artificial visual system,pain system,and tactile perception systems are elaborated.Finally,the current challenges are summarized,and future directions for their developments are proposed.
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
基金supported by the National Key Research and Development Program of China(2021YFA1101303)the National Natural Science Foundation of China(62374115)the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096).
文摘The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.
基金the National Natural-Science Foundation of China(Grant No.62304137)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012479,2024A1515011737,and 2024A1515010006)+4 种基金the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(Grant No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)the Project on Frontier and Interdisciplinary Research Assessment,Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2023XXA002)NTUT-SZU Joint Research Program.
文摘In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.
基金supported by the National Nature Science Foundation of China(NSFC)(Grant Nos.22275004,62274040,and 62304046)the Shanghai Science and Technology Committee(Grant No.22JC1410300)+2 种基金the Shanghai Key Laboratory of Novel Extreme Condition Materials(Grant No.22dz2260800)the National Key Research and Development Program of China(Grant No.2022YFE0137400)the Shanghai Science and Technology Innovationaction Plan(Grant No.24DZ3001200).
文摘High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.
基金the Key Research and Development Program sponsored by the Ministry of Science and Technology of China(2024YFE0201800)the National Natural Science Foundation of China(Nos.12134010,12174290)the Natural Science Foundation of Hubei Province,China(Grant Nos.2023BAB102 and 2021CFB039).
文摘Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to synthesize novel perovskites,while material-form-associated light management,which is crucial for enhancing the photodetector’s efficiency,is largely overlooked.Herein,we introduced surface light management strategy into DJ-type perovskite system by synthesizing surface-patterned BDAPbBr4(BPB,BDA=NH_(3)(CH_(2))_(4)NH_(3))microplates(MPs)using template-assisted space-confined method,which was further elucidated by theoretical optical simulation.By leveraging surface-patterned MPs to enhance light absorption,the BPB-based photodetectors(PDs)achieved remarkable photoresponse in ultraviolet region,marked by a high on/off ratio(~5000),superior responsivity(2.24 A W^(-1)),along with large detectivity(~10^(13) Jones)and low detection limit(68.7 nW cm^(-2)).Additionally,the PDs showcased superior light communication and imaging capabilities even under weak-light illumination.Notably,the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD.These results represented the first demonstration of BPB perovskite in weak-light communication and imaging,as well as in polarized light detection.Our findings offer valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies.
基金X.H.acknowledges the financial support by Australian Research Council(ARC)Future Fellowship(FT190100756)M.P.S.gratefully acknowledges the support by the ARC under Discovery Early Career Researcher Award(DECRA)(DE210101565)and Discovery Project(DP230101676).
文摘The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.
文摘With the vigorous development of Sino-foreign cooperative education,English teaching for specialized courses has become a crucial link in cultivating internationalized professionals.This paper takes the Optoelectronic Information Science and Engineering(Sino-German Cooperation)major of the University of Shanghai for Science and Technology as the research object,and deeply analyzes the dilemmas faced by English teaching in this major,such as significant differences in students’English foundations,poor adaptability of teaching resources,and insufficient cultivation of cross-cultural communication skills.Based on this,a series of teaching reform strategies are proposed,covering aspects,such as optimizing teaching objectives,innovating curriculum settings,changing teaching methods,strengthening the construction of the teaching staff,and improving the teaching evaluation system.Specific teaching reform cases are also incorporated,aiming to improve the quality of English teaching for specialized courses and cultivate internationalized talents with solid professional knowledge and excellent English capabilities.
文摘The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.