Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16...Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the k-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.展开更多
Let G(V, E) be a finite connected simple graph with vertex set V(G). A function is a signed dominating function f : <em style="white-space:normal;">V<span style="white-space:normal;"&...Let G(V, E) be a finite connected simple graph with vertex set V(G). A function is a signed dominating function f : <em style="white-space:normal;">V<span style="white-space:normal;">(<em style="white-space:normal;">G<span style="white-space:normal;">)<span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−1,1} if for every vertex v <span style="white-space:nowrap;">∈ V(G), the sum of closed neighborhood weights of v is greater or equal to 1. The signed domination number γ<sub>s</sub>(G) of G is the minimum weight of a signed dominating function on G. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths P<sub>m</sub> and P<sub>n</sub> for m = 6, 7 and arbitrary n.展开更多
In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Du...In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].展开更多
Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x...Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .展开更多
A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for ...A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for any v ∈ V, where N [v] is the closed neighborhood and N(v) is the neighborhood of v, and(ii) every vertex v for which f(v) =-1 is adjacent to a vertex u for which f(u) = 2. The weight of a SRDF(res. STRDF) is the sum of its function values over all vertices.The signed(res. signed total) Roman domination number of G is the minimum weight among all signed(res. signed total) Roman dominating functions of G. In this paper,we compute the exact values of the signed(res. signed total) Roman domination numbers of complete bipartite graphs and wheels.展开更多
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ...Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.展开更多
A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if t...A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.展开更多
A function f:E(G)→{−1,1}is called a signed edge dominating function(SEDF for short)of G if f[e]=f(N[e])=Σ_( e′∈N[e])f(e′)≥1,for every edge e∈E(G).w(f)=Σ_(e∈E) f(e)is called the weight of f.The signed edge dom...A function f:E(G)→{−1,1}is called a signed edge dominating function(SEDF for short)of G if f[e]=f(N[e])=Σ_( e′∈N[e])f(e′)≥1,for every edge e∈E(G).w(f)=Σ_(e∈E) f(e)is called the weight of f.The signed edge domination numberγs′(G)of G is the minimum weight among all signed edge dominating functions of G.In this paper,we initiate the study of this parameter for G a complete multipartite graph.We provide the lower and upper bounds ofγs′(G)for G a complete r-partite graph with r even and all parts equal.展开更多
Let G =(V, E) be a simple graph with vertex set V and edge set E. A signed mixed dominating function of G is a function f: VUE→{-1,1}such that ∑y∈Nm(x)U{x}f(y) ≥1 for every element x ∈ V U E, where Nm (x...Let G =(V, E) be a simple graph with vertex set V and edge set E. A signed mixed dominating function of G is a function f: VUE→{-1,1}such that ∑y∈Nm(x)U{x}f(y) ≥1 for every element x ∈ V U E, where Nm (x) is the set of elements of V U E adjacent or incident to x. The weight of f isw(f)∑x∈VUEf(x).The signed mixed domination problem is to find a minimum-weight signed mixed dominating function of a graph. In this paper we study the computational complexity of signed mixed domination problem. We prove that the signed mixed domination problem is NP-complete for bipartite graphs, chordal graphs, even for planar bipartite graphs.展开更多
Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Th...Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.展开更多
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ...Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.展开更多
For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, fo...For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, for every v ∈ V, f(N[v]) ≥ 1. The definition of total P-dominating function is obtained by simply changing ‘closed' neighborhood N[v] in the definition of P-dominating function to ‘open' neighborhood N(v). The (total) P-domination number of a graph G is defined to be the infimum of weight w(f) = ∑v ∈ V f(v) taken over all (total) P-dominating function f. Similarly, the P-edge and P-star dominating functions can be defined. In this paper we survey some recent progress on the topic of dominating functions in graph theory. Especially, we are interested in P-, P-edge and P-star dominating functions of graphs with integer values.展开更多
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination ...Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).展开更多
Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination numbe...Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.展开更多
An upper bound is established on the parameter Γ -(G) for a cubic graph G and two infinite families of 3-connected graphs G k, G * k are constructed to show that the bound is sharp and, moreover, the difference Γ -(...An upper bound is established on the parameter Γ -(G) for a cubic graph G and two infinite families of 3-connected graphs G k, G * k are constructed to show that the bound is sharp and, moreover, the difference Γ -(G * k)-γ s(G * k) can be arbitrarily large, where Г -(G * k) and γ s(G * k) are the upper minus domination and signed domination numbers of G * k, respectively. Thus two open problems are solved.展开更多
文摘Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the k-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.
文摘Let G(V, E) be a finite connected simple graph with vertex set V(G). A function is a signed dominating function f : <em style="white-space:normal;">V<span style="white-space:normal;">(<em style="white-space:normal;">G<span style="white-space:normal;">)<span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−1,1} if for every vertex v <span style="white-space:nowrap;">∈ V(G), the sum of closed neighborhood weights of v is greater or equal to 1. The signed domination number γ<sub>s</sub>(G) of G is the minimum weight of a signed dominating function on G. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths P<sub>m</sub> and P<sub>n</sub> for m = 6, 7 and arbitrary n.
基金Supported by the National Science Foundation of Jiangxi province(9911020).
文摘In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].
基金the National Natural Science Foundation of China(Grant No.10471311)
文摘Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .
基金The NSF(11271365)of Chinathe NSF(BK20151117)of Jiangsu Province
文摘A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for any v ∈ V, where N [v] is the closed neighborhood and N(v) is the neighborhood of v, and(ii) every vertex v for which f(v) =-1 is adjacent to a vertex u for which f(u) = 2. The weight of a SRDF(res. STRDF) is the sum of its function values over all vertices.The signed(res. signed total) Roman domination number of G is the minimum weight among all signed(res. signed total) Roman dominating functions of G. In this paper,we compute the exact values of the signed(res. signed total) Roman domination numbers of complete bipartite graphs and wheels.
文摘Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.
文摘A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.
基金Supported by the National Natural Science Foundation of China (Grant No. 71774078)。
文摘A function f:E(G)→{−1,1}is called a signed edge dominating function(SEDF for short)of G if f[e]=f(N[e])=Σ_( e′∈N[e])f(e′)≥1,for every edge e∈E(G).w(f)=Σ_(e∈E) f(e)is called the weight of f.The signed edge domination numberγs′(G)of G is the minimum weight among all signed edge dominating functions of G.In this paper,we initiate the study of this parameter for G a complete multipartite graph.We provide the lower and upper bounds ofγs′(G)for G a complete r-partite graph with r even and all parts equal.
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20151117)the Key Scientific Research Foundation of Higher Education Institutions of Henan Province(Grant No.15B110009)
文摘Let G =(V, E) be a simple graph with vertex set V and edge set E. A signed mixed dominating function of G is a function f: VUE→{-1,1}such that ∑y∈Nm(x)U{x}f(y) ≥1 for every element x ∈ V U E, where Nm (x) is the set of elements of V U E adjacent or incident to x. The weight of f isw(f)∑x∈VUEf(x).The signed mixed domination problem is to find a minimum-weight signed mixed dominating function of a graph. In this paper we study the computational complexity of signed mixed domination problem. We prove that the signed mixed domination problem is NP-complete for bipartite graphs, chordal graphs, even for planar bipartite graphs.
文摘Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.
基金Project supported by the National Natural Science Foundation of China (Grant No.1057117), and the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04).
文摘Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571117), the Shuguang Plan of Shang- hai Education Devel0pment Foundation (Grant No.06SG42), and the Natural Science Development Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04)
文摘For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, for every v ∈ V, f(N[v]) ≥ 1. The definition of total P-dominating function is obtained by simply changing ‘closed' neighborhood N[v] in the definition of P-dominating function to ‘open' neighborhood N(v). The (total) P-domination number of a graph G is defined to be the infimum of weight w(f) = ∑v ∈ V f(v) taken over all (total) P-dominating function f. Similarly, the P-edge and P-star dominating functions can be defined. In this paper we survey some recent progress on the topic of dominating functions in graph theory. Especially, we are interested in P-, P-edge and P-star dominating functions of graphs with integer values.
基金Supported by the National Natural Science Foundation of China (Grant No. 11061014)
文摘Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).
基金Supported by Doctoral Scientific Research Fund of Harbin Normal University(Grant No.KGB201008)
文摘Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.
文摘An upper bound is established on the parameter Γ -(G) for a cubic graph G and two infinite families of 3-connected graphs G k, G * k are constructed to show that the bound is sharp and, moreover, the difference Γ -(G * k)-γ s(G * k) can be arbitrarily large, where Г -(G * k) and γ s(G * k) are the upper minus domination and signed domination numbers of G * k, respectively. Thus two open problems are solved.