The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as w...The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial loss...Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety.The capacitors forming the output filter,typically aluminumelectrolytic capacitors(AECs),are among the most critical and susceptible components in power converters.The electrolyte in AECs often evaporates over time,causing the internal resistance to rise and the capacitance to drop,ultimately leading to component failure.Detecting this fault requires measuring the current in the capacitor,rendering the method invasive and frequently impractical due to spatial constraints or operational limitations imposed by the integration of a current sensor in the capacitor branch.This article proposes the implementation of an online noninvasive fault diagnosis technique for estimating the Equivalent Series Resistance(ESR)and Capacitance(C)values of the capacitor,employing a combination of signal processing techniques(SPT)and machine learning(ML)algorithms.This solution relies solely on the converter’s input and output signals,therefore making it a non-invasive approach.The ML algorithm used was linear regression,applied to 27 attributes,21 of which were generated through feature engineering to enhance the model’s performance.The proposed solution demonstrates an R^(2) score greater than 0.99 in the estimation of both ESR and C.展开更多
文摘The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
文摘Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety.The capacitors forming the output filter,typically aluminumelectrolytic capacitors(AECs),are among the most critical and susceptible components in power converters.The electrolyte in AECs often evaporates over time,causing the internal resistance to rise and the capacitance to drop,ultimately leading to component failure.Detecting this fault requires measuring the current in the capacitor,rendering the method invasive and frequently impractical due to spatial constraints or operational limitations imposed by the integration of a current sensor in the capacitor branch.This article proposes the implementation of an online noninvasive fault diagnosis technique for estimating the Equivalent Series Resistance(ESR)and Capacitance(C)values of the capacitor,employing a combination of signal processing techniques(SPT)and machine learning(ML)algorithms.This solution relies solely on the converter’s input and output signals,therefore making it a non-invasive approach.The ML algorithm used was linear regression,applied to 27 attributes,21 of which were generated through feature engineering to enhance the model’s performance.The proposed solution demonstrates an R^(2) score greater than 0.99 in the estimation of both ESR and C.