As an increasingly popular flow metering technology,Coriolis mass flowmeter exhibits high measurement accuracy under single-phase flow condition and is widely used in the industry.However,under complex flow conditions...As an increasingly popular flow metering technology,Coriolis mass flowmeter exhibits high measurement accuracy under single-phase flow condition and is widely used in the industry.However,under complex flow conditions,such as two-phase flow,the measurement accuracy is greatly decreased due to various factors including improper signal processing methods.In this study,three digital signal processing methods—the quadrature demodulation(QD)method,Hilbert method,and sliding discrete time Fourier transform method—are analyzed for their applications in processing sensor signals and providing measurement results under gas-liquid two-phase flow condition.Based on the analysis,specific improvements are applied to each method to deal with the signals under two-phase flow condition.For simulation,sensor signals under single-and two-phase flow conditions are established using a random walk model.The phase difference tracking performances of these three methods are evaluated in the simulation.Based on the digital signal processor,a converter program is implemented on its evaluation board.The converter program is tested under single-and two-phase flow conditions.The improved signal processing methods are evaluated in terms of the measurement accuracy and complexity.The QD algorithm has the best performance under the single-phase flow condition.Under the two-phase flow condition,the QD algorithm performs a little better in terms of the indication error and repeatability than the improved Hilbert algorithm at 160,250,and 420 kg/h flow points,whereas the Hilbert algorithm outperforms the QD algorithm at the 600 kg/h flow point.展开更多
We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It...We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It aims to generate the nonlinear behavior of light to obtain data in binary logic codes for transmission in fiber optics communication. Effective parameters, such as refractive indices of a silicon waveguide, coupling coefficients (~), and ring radius ring (R), can be properly selected to operate the nonlinear behavior. Therefore, the binary coded data generated by the PANDA ring resonator system can be decoded and converted to Manchester codes, where the decoding process of the transmitted codes occurs at the end of the transmission link. The simulation results show that the original codes can be recovered with a high security of signal transmission using the Manchester method.展开更多
基金Project supported by the Scientific Research Project of Shanghai Municipal Bureau of Quality,China and the Technical Supervision Foundation of China(No.2018-05)。
文摘As an increasingly popular flow metering technology,Coriolis mass flowmeter exhibits high measurement accuracy under single-phase flow condition and is widely used in the industry.However,under complex flow conditions,such as two-phase flow,the measurement accuracy is greatly decreased due to various factors including improper signal processing methods.In this study,three digital signal processing methods—the quadrature demodulation(QD)method,Hilbert method,and sliding discrete time Fourier transform method—are analyzed for their applications in processing sensor signals and providing measurement results under gas-liquid two-phase flow condition.Based on the analysis,specific improvements are applied to each method to deal with the signals under two-phase flow condition.For simulation,sensor signals under single-and two-phase flow conditions are established using a random walk model.The phase difference tracking performances of these three methods are evaluated in the simulation.Based on the digital signal processor,a converter program is implemented on its evaluation board.The converter program is tested under single-and two-phase flow conditions.The improved signal processing methods are evaluated in terms of the measurement accuracy and complexity.The QD algorithm has the best performance under the single-phase flow condition.Under the two-phase flow condition,the QD algorithm performs a little better in terms of the indication error and repeatability than the improved Hilbert algorithm at 160,250,and 420 kg/h flow points,whereas the Hilbert algorithm outperforms the QD algorithm at the 600 kg/h flow point.
基金Universiti Teknolog,Malaysia(UTM),and the IDF for their financial support
文摘We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It aims to generate the nonlinear behavior of light to obtain data in binary logic codes for transmission in fiber optics communication. Effective parameters, such as refractive indices of a silicon waveguide, coupling coefficients (~), and ring radius ring (R), can be properly selected to operate the nonlinear behavior. Therefore, the binary coded data generated by the PANDA ring resonator system can be decoded and converted to Manchester codes, where the decoding process of the transmitted codes occurs at the end of the transmission link. The simulation results show that the original codes can be recovered with a high security of signal transmission using the Manchester method.