期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dendritic sidebranches of a binary system with enforced flow
1
作者 李向明 王自东 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期394-399,共6页
In the present paper, the problem of sidebranches in the binary dendritic growth with enforced flow is studied. The positions of the first sidebranch and spacing of dendritic sidebranches are presented. For the neutra... In the present paper, the problem of sidebranches in the binary dendritic growth with enforced flow is studied. The positions of the first sidebranch and spacing of dendritic sidebranches are presented. For the neutral stable mode of dendritic growth, effects of various parameters on sidebranches are analysed. Our result shows that sidebranches are produced behind a critical point ξC′. 展开更多
关键词 binary system sidebranches enforced flow pattern formation
原文传递
Distinctions of dendritic behavior influenced by constant pressure and periodic pressure
2
作者 Shan Shang Zhi-peng Guo +3 位作者 Zhi-qiang Han Xin-yu Zhang Yi-nuo Cheng Jun Li 《China Foundry》 SCIE CAS 2021年第2期94-100,共7页
The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure,constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) a... The distinctions of dendritic morphology and sidebranching behavior when solidified under atmosphere pressure,constant pressure which is higher than atmosphere pressure (hereinafter referred to as constant pressure) and periodic pressure were investigated using 3-D phase field method.When growing at atmosphere pressure,side branches (secondary dendritic arms) are irregular.When solidified under constant pressure with a relatively high value,side branches are much more luxuriant,with more developed high-order side branches.When applied with periodic pressure,resonant sidebranching happens,leading to many more regular side branches and the smallest secondary dendritic arm spacing (SDAS) in the three cases.The significant difference in dendritic morphology is associated with tip velocity modulated by total undercooling including pressure and temperature undercooling.In the case of constant pressure,tip velocity increases linearly with total undercooling,and it varies periodically in periodic pressure case.The different variation trend in tip velocity is the reason for the distinct dendrite growth behavior in different cases.Unlike the phenomenon in constant pressure case where the dendrite grows faster with higher pressure,the dendrite grows slower under periodic pressure with higher amplitude,resulting in less developed primary dendrite and side branches.This is influenced by tip remelting due to low undercooling or even negative undercooling.It is revealed that the accelerated velocity of tip remelting increases with the decline of undercooling.The greater the amplitude of periodic pressure,the faster the tip remelting velocity during one period.This is the reason why the average tip velocity decreases with the rise of amplitude of periodic pressure. 展开更多
关键词 periodic pressure sidebranching AMPLITUDE tip velocity UNDERCOOLING phase field method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部