期刊文献+
共找到3,087篇文章
< 1 2 155 >
每页显示 20 50 100
Side-Scan Sonar Image Detection of Shipwrecks Based on CSC-YOLO Algorithm
1
作者 Shengxi Jiao Fenghao Xu Haitao Guo 《Computers, Materials & Continua》 2025年第2期3019-3044,共26页
Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the... Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the task of object detection in shipwreck side-scan sonar images, due to the complex seabed environment, it is difficult to extract object features, often leading to missed detections of shipwreck images and slow detection speed. To address these issues, this paper proposes an object detection algorithm, CSC-YOLO (Context Guided Block, Shared Conv_Group Normalization Detection, Cross Stage Partial with 2 Partial Convolution-You Only Look Once), based on YOLOv8n for shipwreck side-scan sonar images. Firstly, to tackle the problem of small samples in shipwreck side-scan sonar images, a new dataset was constructed through offline data augmentation to expand data and intuitively enhance sample diversity, with the Mosaic algorithm integrated to strengthen the network’s generalization to the dataset. Subsequently, the Context Guided Block (CGB) module was introduced into the backbone network model to enhance the network’s ability to learn and express image features. Additionally, by employing Group Normalization (GN) techniques and shared convolution operations, we constructed the Shared Conv_GN Detection (SCGD) head, which improves the localization and classification performance of the detection head while significantly reducing the number of parameters and computational load. Finally, the Partial Convolution (PConv) was introduced and the Cross Stage Partial with 2 PConv (C2PC) module was constructed to help the network maintain effective extraction of spatial features while reducing computational complexity. The improved CSC-YOLO model, compared with the YOLOv8n model on the validation set, mean Average Precision (mAP) increases by 3.1%, Recall (R) increases by 6.4%, and the F1-measure (F1) increases by 4.7%. Furthermore, in the improved algorithm, the number of parameters decreases by 20%, the computational complexity decreases by 23.2%, and Frames Per Second (FPS) increases by 17.6%. In addition, compared with the advanced popular model, the superiority of the proposed model is proved. The subsequent experiments on real side-scan sonar images of shipwrecks fully demonstrate that the CSC-YOLO algorithm meets the requirements for actual side-scan sonar detection of underwater shipwrecks. 展开更多
关键词 Enhanced YOLOv8 side-scan sonar shipwreck detection group normalization deep learning
在线阅读 下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
2
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
在线阅读 下载PDF
DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation 被引量:2
3
作者 ZHAO Xiaohong QIN Rixia +3 位作者 ZHANG Qilei YU Fei WANG Qi HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1089-1096,共8页
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS... In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration. 展开更多
关键词 side-scan sonar(SSS) semantic segmentation dilated convolutions SUPER-RESOLUTION
在线阅读 下载PDF
YOLOv5-Based Seabed Sediment Recognition Method for Side-Scan Sonar Imagery 被引量:1
4
作者 WANG Ziwei HU Yi +1 位作者 DING Jianxiang SHI Peng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1529-1540,共12页
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ... Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery. 展开更多
关键词 seabed sediment real-time target recognition YOLOv5 model side-scan sonar imagery transfer learning
在线阅读 下载PDF
Multi-beam Sonar and Side-scan Sonar Image Co-registering and Fusing
5
作者 阳凡林 刘经南 赵建虎 《Marine Science Bulletin》 CAS 2003年第1期16-23,共8页
Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated... Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data. 展开更多
关键词 Multi-beam sonar side-scan sonar Co-registering FUSION
在线阅读 下载PDF
Side-Scan Sonar Image Synthesis Based on CycleGAN with 3DModels and Shadow Integration
6
作者 Byeongjun Kim Seung-HunLee Won-DuChang 《Computer Modeling in Engineering & Sciences》 2025年第11期1237-1252,共16页
Side-scan sonar(SSS)is essential for acquiring high-resolution seafloor images over large areas,facilitat-ing the identification of subsea objects.However,military security restrictions and the scarcity of subsea targ... Side-scan sonar(SSS)is essential for acquiring high-resolution seafloor images over large areas,facilitat-ing the identification of subsea objects.However,military security restrictions and the scarcity of subsea targets limit the availability of SSS data,posing challenges for Automatic Target Recognition(ATR)research.This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks(CycleGAN)to augment SSS images of key subsea objects,such as shipwrecks,aircraft,and drowning victims.The process begins by constructing 3D models to generate rendered images with realistic shadows frommultiple angles.To enhance image quality,a shadowextractor and shadow region loss function are introduced to ensure consistent shadowrepresentation.Additionally,amulti-resolution learning structure enables effective training,even with limited data availability.The experimental results show that the generated data improved object detection accuracy when they were used for training and demonstrated the ability to generate clear shadow and background regions with stability. 展开更多
关键词 side-scan sonar(SSS) cycle-consistent generative adversarial networks(CycleGAN) automatic target recognition(ATR) sonar imaging sample augmentation image simulation image translation
在线阅读 下载PDF
ProNet:Underwater Forward-Looking Sonar Images Target Detection Network Based on Progressive Sensitivity Capture
7
作者 Kaiqiao Wang Peng Liu Chun Zhang 《Computers, Materials & Continua》 2025年第3期4931-4948,共18页
Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlookin... Underwater target detection in forward-looking sonar(FLS)images is a challenging but promising endeavor.The existing neural-based methods yield notable progress but there remains room for improvement due to overlooking the unique characteristics of underwater environments.Considering the problems of low imaging resolution,complex background environment,and large changes in target imaging of underwater sonar images,this paper specifically designs a sonar images target detection Network based on Progressive sensitivity capture,named ProNet.It progressively captures the sensitive regions in the current image where potential effective targets may exist.Guided by this basic idea,the primary technical innovation of this paper is the introduction of a foundational module structure for constructing a sonar target detection backbone network.This structure employs a multi-subspace mixed convolution module that initially maps sonar images into different subspaces and extracts local contextual features using varying convolutional receptive fields within these heterogeneous subspaces.Subsequently,a Scale-aware aggregation module effectively aggregates the heterogeneous features extracted from different subspaces.Finally,the multi-scale attention structure further enhances the relational perception of the aggregated features.We evaluated ProNet on three FLS datasets of varying scenes,and experimental results indicate that ProNet outperforms the current state-of-the-art sonar image and general target detectors. 展开更多
关键词 Forward-looking sonar image target detection subspace decomposition progressive sensitivity capture
在线阅读 下载PDF
渔业声学数据后处理软件现状评述与展望:以Sonar5-Pro为例 被引量:2
8
作者 张辉 《渔业信息与战略》 2024年第1期29-38,共10页
渔业声学数据解析是渔业资源声学调查研究和应用的关键所在。目前全球渔业声学数据后处理的代表性软件主要有挪威Sonar5-Pro和澳大利亚Echoview。以Sonar5-Pro为例,开展了5个方面的研究:1)回顾了该软件自1994年以来近30年的发展历史;2)... 渔业声学数据解析是渔业资源声学调查研究和应用的关键所在。目前全球渔业声学数据后处理的代表性软件主要有挪威Sonar5-Pro和澳大利亚Echoview。以Sonar5-Pro为例,开展了5个方面的研究:1)回顾了该软件自1994年以来近30年的发展历史;2)介绍了软件对声学数据进行处理的总体思路,即前处理、数据分析和结果展示3个步骤及贯穿始终的数据检视功能,以及软件的5项重要设计理念;3)介绍了该软件9项代表性功能特性的实现思路和具体方法;4)以主流分析应用鱼类生物量分析过程为例,介绍了软件的数据处理流程;5)对该软件的3项核心关键技术,即多目标跟踪(multiple target tracking)、交叉过滤跟踪(crossfilter tracker)和图像分析工具(image analysis)进行了详细介绍。研究发现,一个成熟的渔业声学数据后处理系统庞大而复杂,涉及渔业、物理学和计算机多学科知识的融合,着力加强相关领域交叉学科人才培养,充分借鉴吸收国外已有先进理念和成熟技术,基于各种应用场景需求研发具有自主知识产权的分析软件,采用引进消化吸收再逐点突破最终集成创新的方式,可以作为未来提升中国渔业声学数据解析能力和水平的重要发展途径。 展开更多
关键词 渔业声学 渔业声呐 探鱼仪 回声图 数据处理 sonar5-Pro
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar 被引量:1
9
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar Dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
采用方向自适应密度聚类自动检测侧扫声呐图像海底线 被引量:1
10
作者 王爱学 金绍华 +2 位作者 刘天阳 查文富 刘畅 《武汉大学学报(信息科学版)》 北大核心 2025年第4期674-683,698,共11页
侧扫声呐是获取海底地貌图像的主要手段之一,海底线是侧扫声呐瀑布图像最显著的特征,准确检测和跟踪海底线是侧扫声呐数据精细处理的基础。受水体环境噪声、船体、水面及水体悬浮目标散射等干扰,传统阈值法及相关图像特征检测算法难以... 侧扫声呐是获取海底地貌图像的主要手段之一,海底线是侧扫声呐瀑布图像最显著的特征,准确检测和跟踪海底线是侧扫声呐数据精细处理的基础。受水体环境噪声、船体、水面及水体悬浮目标散射等干扰,传统阈值法及相关图像特征检测算法难以实现海底线自动、准确、高效提取。充分考虑侧扫声呐海底线的边缘特性及沿航迹向密集分布的空间特点,提出了一种边缘方向适应性密度聚类和聚类链筛选相结合的海底线检测方法。该方法通过高斯一阶导卷积模板及非极大值抑制实现高噪声图像边缘梯度和方向计算以及边缘特征的细化;通过设置窄带状搜索邻域,并依据边缘梯度方向实时调整搜索邻域的长轴,以实现对方向变化的线状特征的密度聚类;通过构建基于边缘特征密度聚类的海底线检测策略,包括设定经验范围、阈值法构建聚类种子集、长链原则、排他原则、对称原则、趋势延伸原则、修复原则等,以实现海底线边缘特征的快速密度聚类成链和海底线的筛选。实验验证和对比分析的结果表明,在持续噪声、复杂悬浮物等常见水体回波干扰下,所提方法在海底线检测的准确性和稳定性上优于传统阈值方法,且单呯平均检测耗时仅为0.661 ms。所提侧扫声呐图像海底线检测方法有较好的稳定性和干扰普适性,可在侧扫声呐数据采集和事后处理中推广应用。 展开更多
关键词 侧扫声呐 海底线跟踪 密度聚类 方向自适应
原文传递
An Underwater Robot Inspection Anomaly Localization Feedback System Based on Sonar Technology
11
作者 Siqiang Cheng Yi Liu +1 位作者 Aibin Tang Libin Yang 《Journal of Electronic Research and Application》 2024年第4期17-21,共5页
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa... This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention. 展开更多
关键词 Underwater robots Positioning feedback system sonar real-time tracking
在线阅读 下载PDF
基于SFS混合反射模型的侧扫声呐图像三维重建
12
作者 袁明新 张亮 +1 位作者 王以龙 刘维 《海洋工程》 北大核心 2025年第2期187-195,共9页
基于明暗恢复形状(shape from shading,简称SFS)方法进行海底侧扫声呐图像三维重建时,会因为方法中反射模型与海底表面不相符而降低重建精度。为此文章在分析大陆架海底表面特点及侧扫声呐工作机理的基础上,提出了基于SFS混合反射模型... 基于明暗恢复形状(shape from shading,简称SFS)方法进行海底侧扫声呐图像三维重建时,会因为方法中反射模型与海底表面不相符而降低重建精度。为此文章在分析大陆架海底表面特点及侧扫声呐工作机理的基础上,提出了基于SFS混合反射模型的侧扫声呐图像海底地形重建方法。首先在保留Lambert漫反射模型的基础上引入Blinn-Phong镜面反射模型,并基于侧扫声呐图像粗糙度进行漫反射系数、镜面反射系数和镜面反射指数的自适应设计,从而形成适合复杂海底表面的混合反射模型;然后线性化处理辐射照度方程,并采用牛顿-拉夫逊方法来获得海底表面高程;最后根据海底点设计反演高程约束系数来约束表面高程,进而完成侧扫声呐图像的三维重建。试验测试结果表明,相较于其他三维重建方法,文中方法的平均绝对误差值VMAE平均降低了32.18%、相关系数值VCC平均提高了29.62%、信噪比值VSNR平均提升了27.23%,有效实现了侧扫声呐图像三维重建。 展开更多
关键词 侧扫声呐图像 明暗恢复形状方法 混合反射模型 三维重建
在线阅读 下载PDF
成像声呐在渔业领域的应用进展
13
作者 张俊 孙铭帅 +3 位作者 王欢欢 李斌 孔啸兰 陈作志 《渔业现代化》 北大核心 2025年第5期1-11,共11页
成像声呐作为现代渔业资源监测与评估的重要工具,尽管面临环境复杂性、分辨率限制以及大规模数据处理等挑战,但在渔业资源调查、鱼类行为分析及栖息地保护等方面展现了巨大的潜力。本研究系统总结了成像声呐技术在渔业领域的应用进展,... 成像声呐作为现代渔业资源监测与评估的重要工具,尽管面临环境复杂性、分辨率限制以及大规模数据处理等挑战,但在渔业资源调查、鱼类行为分析及栖息地保护等方面展现了巨大的潜力。本研究系统总结了成像声呐技术在渔业领域的应用进展,深入分析了现存挑战,并对未来技术发展进行了展望。重点关注了复杂和敏感栖息地监测、低可视度环境中的目标探测、鱼类行为分析以及物种数量估计等多个应用场景,全面梳理了成像声呐在渔业领域应用的国内外研究现状。在此基础上,从提升分辨率、开发自动化数据处理流程、实现小型化与轻量化设计以及推进集成化设计等多个维度出发,对成像声呐的未来发展进行了展望,旨在为成像声呐在渔业领域的广泛应用和支撑渔业资源的科学管理与决策提供参考。 展开更多
关键词 成像声呐 水声探测 目标识别 数量估计
在线阅读 下载PDF
基于多粒度声呐图像匹配的水下定位方法
14
作者 王可 王振鹤 +4 位作者 王彪 刘攀第 王华 李佳欣 徐明亮 《舰船科学技术》 北大核心 2025年第14期95-102,共8页
针对水下地形匹配定位问题,提出一种基于多粒度声呐图像匹配的定位方法。构建了U-Net架构的图像特征抽取模型,以无监督方式抽取水下声呐图像的高层特征。设计了一种具有时空约束的多粒度匹配算法,在特征空间内首先进行粗粒度匹配,并结... 针对水下地形匹配定位问题,提出一种基于多粒度声呐图像匹配的定位方法。构建了U-Net架构的图像特征抽取模型,以无监督方式抽取水下声呐图像的高层特征。设计了一种具有时空约束的多粒度匹配算法,在特征空间内首先进行粗粒度匹配,并结合时空约束约简搜索空间,然后进行细粒度精确匹配,根据匹配结果实现水下定位。通过建模水下典型地形并进行模拟声呐探测构建了数据集,包括水下地形高程数据和对应的声呐探测图像。在自构数据集上的实验结果表明,所提方法的定位精度可达0.679 m,平均单次定位时长小于0.5 s,性能优于基线算法。 展开更多
关键词 水下定位 声呐图像 特征匹配 图像检索 多粒度
在线阅读 下载PDF
海底地形多波束三维点云优化实验设计
15
作者 秦祖军 蔡毅冲 彭智勇 《实验室研究与探索》 北大核心 2025年第5期21-25,共5页
针对多波束测深技术获取的海底地形点云数据存在冗余点云、噪声点云及数据孔洞的问题,结合地形高程设计了基于二维(2D)网格的三维点云数据快速抽稀算法。通过建立局域趋势面模型,提出了趋势面约束的点云统计(SOR)滤波算法,并采用多层动... 针对多波束测深技术获取的海底地形点云数据存在冗余点云、噪声点云及数据孔洞的问题,结合地形高程设计了基于二维(2D)网格的三维点云数据快速抽稀算法。通过建立局域趋势面模型,提出了趋势面约束的点云统计(SOR)滤波算法,并采用多层动态质心拟合方法,改进了Delaunay三角网格拟合插值孔洞填补算法。实验结果表明,快速抽稀算法在保持高程范围稳定的同时实现了86.07%的数据简化率,最近点距离标准差低于0.003m。所提滤波算法相较于传统SOR滤波算法,去噪率提升了20.69%。与传统Delaunay插点法相比,填补前后最近点平均距离精度提高了约0.02m,点云平均密度增加了15.92%,从而增强了点云模型的真实性和完整性。 展开更多
关键词 多波束测深技术 抽稀 滤波 孔洞填补
在线阅读 下载PDF
基于拖曳声纳的线导鱼雷攻击问题研究
16
作者 王顺杰 野学范 苗齐 《兵器装备工程学报》 北大核心 2025年第1期104-108,共5页
被动拖曳线列阵声纳探测距离远,使用被动拖曳线列阵声纳探测信息可先敌攻击。针对基于拖曳线列阵声纳探测信息的线导加尾流自导鱼雷攻击时尾流进入点问题,建立了基于艇艏声纳探测和基于拖曳声纳探测的线导加尾流自导鱼雷导引模型,采用... 被动拖曳线列阵声纳探测距离远,使用被动拖曳线列阵声纳探测信息可先敌攻击。针对基于拖曳线列阵声纳探测信息的线导加尾流自导鱼雷攻击时尾流进入点问题,建立了基于艇艏声纳探测和基于拖曳声纳探测的线导加尾流自导鱼雷导引模型,采用不同声纳探测时的线导加尾流自导鱼雷攻击弹道进行了仿真,结果发现基于拖曳声纳探测时尾流进入点偏离设定进入点。研究分析表明,采用拖曳声纳探测方位进行导引时不同态势下存在不同的系统导引误差,导致鱼雷进入尾流距离偏大或偏小。 展开更多
关键词 拖曳声纳 线导 尾流 鱼雷攻击
在线阅读 下载PDF
干涉合成孔径声纳局部相干法复图像配准
17
作者 钟何平 李涵 +2 位作者 田振 黄攀 唐劲松 《武汉大学学报(信息科学版)》 北大核心 2025年第4期739-745,共7页
复图像配准是干涉合成孔径声纳(interferometric synthetic aperture sonar,InSAS)信号处理中一个非常重要的处理步骤,直接影响到提取的干涉相位质量,关系到最终所重建的数字高程模型精度。为提升获取的缠绕相位质量,在充分分析InSAS成... 复图像配准是干涉合成孔径声纳(interferometric synthetic aperture sonar,InSAS)信号处理中一个非常重要的处理步骤,直接影响到提取的干涉相位质量,关系到最终所重建的数字高程模型精度。为提升获取的缠绕相位质量,在充分分析InSAS成像特点的基础上,提出了一种基于局部相干法的InSAS缠绕相位获取方法。首先分析局部数据块内相位点距离差的变化特点,在此基础上论证了采用中心相位点距离差代替局部相邻相位点距离差的可行性,进一步导出了采用局部相干法提取缠绕相位的方法。仿真数据和实测数据实验结果表明:所提方法提取的缠绕相位质量显著优于经典复图像配准方法,残差点数量急剧减少,并且可有效克服传统复图像配准方法中全局偏移量拟合所带来的误差传播。 展开更多
关键词 InSAS 缠绕相位 相干法 配准 残差点
原文传递
水下声隐身目标探测关键技术与发展趋势
18
作者 杨益新 谢磊 +3 位作者 杨龙 汪勇 王璐 刘煜琪 《中国舰船研究》 北大核心 2025年第5期3-13,共11页
随着水下目标声隐身能力的提升与复杂海洋环境中声传播特性异常现象加剧,水声探测技术面临着严峻挑战。依赖于水下目标自身辐射噪声的被动声呐,虽具备隐蔽性优势,但对“安静型”目标的探测范围急剧下降。主动声呐通过主动发射声波实现... 随着水下目标声隐身能力的提升与复杂海洋环境中声传播特性异常现象加剧,水声探测技术面临着严峻挑战。依赖于水下目标自身辐射噪声的被动声呐,虽具备隐蔽性优势,但对“安静型”目标的探测范围急剧下降。主动声呐通过主动发射声波实现水下目标探测,探测范围较大,但受限于混响干扰、探测盲区,且面临自身暴露风险。结合水下航行体声隐身技术的发展趋势,系统阐述主/被动声呐探测关键技术发展现状及存在的问题。结合主动多基地探测与分布式被动接收网络,构建主被动联合探测系统。提出“日常警戒−关键探测”分阶段主被动联合探测策略,重点论述主被动联合探测的协同架构和实现方法。旨在为水下探测系统的多模态协同设计提供理论支撑与技术参考,推动水声探测技术向高效、智能、可持续方向演进。 展开更多
关键词 声隐身 目标跟踪 水下目标探测 主被动联合探测 多基地探测 声呐
在线阅读 下载PDF
一种多址声呐探测波形增强检测方法
19
作者 许彦伟 谷浩翔 +1 位作者 刘明刚 侯朝焕 《声学学报》 北大核心 2025年第2期486-499,共14页
为了提高浅海水声环境多址声呐探测性能,提出了一种多址声呐探测波形及其增强检测方法。建立了浅海回波信道模型,生成了浅海多址声呐回波数据;将基于生成对抗网络(GAN)结构的信号增强网络与基于卷积–全连接网络结构的分类网络相结合,... 为了提高浅海水声环境多址声呐探测性能,提出了一种多址声呐探测波形及其增强检测方法。建立了浅海回波信道模型,生成了浅海多址声呐回波数据;将基于生成对抗网络(GAN)结构的信号增强网络与基于卷积–全连接网络结构的分类网络相结合,引入融合梯度(FG)训练方法,设计了WGAN-FG信号增强检测器;基于WGAN-FG信号增强检测器和传统卷积神经网络、循环神经网络、生成对抗网络及副本相关检测器,对浅海多址声呐回波检测性能进行了仿真分析。结果表明,基于深度学习的神经网络检测器相比传统的副本相关检测器具有更好的多径、多普勒和互干扰抑制能力,同时具备目标速度识别能力;而在神经网络检测器中, WGAN-FG信号增强检测器在强干扰或强畸变条件下表现出更优的检测性能和目标速度判别能力。 展开更多
关键词 信道畸变 生成对抗网络 信号增强检测 水下无人航行器 多址声呐
原文传递
上一页 1 2 155 下一页 到第
使用帮助 返回顶部