We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupat...We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.展开更多
Biochar is extensively used as an effective soil amendment for environmental remediation.In addition to its strong contaminant sorption capability, biochar also plays an important role in chemical transformation of co...Biochar is extensively used as an effective soil amendment for environmental remediation.In addition to its strong contaminant sorption capability, biochar also plays an important role in chemical transformation of contaminant due to its inherent redox-active moieties.However, the transformation efficiency of inorganic contaminants is generally very limited when the direct adsorption of contaminants on biochar is inefficient. The present study demonstrates the role of Fe ion as an electron shuttle to enhance Cr(Ⅵ) reduction by biochars. Batch experiments were conducted to examine the effects of Fe(Ⅲ) levels,pyrolysis temperature of biochar, initial solution pH, and biochar dosage on the efficiency of Cr(Ⅵ) removal. Results showed a significant enhancement in Cr(Ⅵ) reduction with an increase in Fe(Ⅲ) concentration and a decrease of initial pH. Biochar produced at higher pyrolysis temperatures(e.g., 700°C) favored Cr(Ⅵ) removal, especially in the presence of Fe(Ⅲ), while a higher biochar dosage proved unfavorable likely due to the agglomeration or precipitation of biochar. Speciation analysis of Fe and Cr elements on the surface of biochar and in the solution further confirmed the role of Fe ion as an electron shuttle between biochar and Cr(Ⅵ). The present findings provide a potential strategy for the advanced treatment of Cr(Ⅵ) at low concentrations as well as an insight into the environmental fate of Cr(Ⅵ) and other micro-pollutants in soil or aqueous compartments containing Fe and natural or engineered carbonaceous materials.展开更多
Carbonaceous materials can accelerate extracellular electron transfer for the biotransformation of many recalcitrant,redox-sensitive contaminants and have received considerable attention in fields related to anaerobic...Carbonaceous materials can accelerate extracellular electron transfer for the biotransformation of many recalcitrant,redox-sensitive contaminants and have received considerable attention in fields related to anaerobic bioremediation.As important electron shuttles(ESs),carbonaceous materials effectively participate in redox biotransformation processes,especially microbially-driven Fe reduction or oxidation coupled with pollutions transformation and anaerobic fermentation for energy and by-product recovery.The related bioprocesses are reviewed here to show that carbonaceous ESs can facilitate electron transfer between microbes and extracellular substrates.The classification and characteristics of carbon-containing ESs are summarized,with an emphasis on activated carbon,graphene,carbon nanotubes and carbonbased immobilized mediators.The influencing factors,including carbon material properties(redox potential,electron transfer capability and solubility)and environmental factors(temperature,p H,substrate concentration and microbial species),on pollution catalytic efficiency are discussed.Furthermore,we briefly describe the prospects of carbonaceous ESs in the field of microbial-driven environmental remediation.展开更多
The figure of shuttle distribution one side of the loom has been used to show the convel-sion of shuttle in picking process.The characteristics of the figure have been analysed andused to introduce a simple method for...The figure of shuttle distribution one side of the loom has been used to show the convel-sion of shuttle in picking process.The characteristics of the figure have been analysed andused to introduce a simple method for shuttle starting distribution.展开更多
Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systemat...Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties.In this work,we propose an autogenously transformed CoWO_(4)/WO_(2) heterojunction catalyst,integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity.CoWO_(4) effectively captures polysulfides,while the CoWO_(4)/WO_(2) interface facilitates their S-S bond activation on heterogenous catalytic sites.Benefiting from its directional intercalation channels,CoWO_(4) not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport.Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite.As a result,the CoWO_(4)/WO_(2) heterostructure demonstrates significantly enhanced catalytic performance,delivering a high capacity of 1262 mAh g^(−1) at 0.1 C.Furthermore,its rate capability and high sulfur loading performance are markedly improved,surpassing the limitations of its single-component counterparts.This study provides new insights into the catalytic mechanisms governing Li-S chemistry and offers a promising strategy for the rational design of high-performance Li-S battery catalysts.展开更多
Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from...Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.展开更多
Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit...Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.展开更多
Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein ...Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c...Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefitin...Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes,including high ionic conductivity,low flammability,natural abundance,and high volumetric capacity,Zn-I_(2)batteries offer significant potential for grid-level deployment.This review provides a comprehensive overview of recent progress in three critical domains:positive-electrode engineering,zinc anode stabilization,and in situ characterization methods.On the cathode side,anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I−/I_(2)conversion.Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates(I_(3)−/I_(5)−),offering new insights into electrolyte-electrode interactions and guiding the development of functional additives to suppress shuttle effects.For the zinc anode,innovations such as pro-tective interfacial layers,three-dimensional host frameworks,and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions,thus improving cycling stability and coulombic efficiency.Despite these advances,challenges remain in achieving long-term reversibility and structural integrity under practical conditions.Future directions include the design of synergistic electrolyte systems,and integrated electrode architectures that simultaneously optimize chemical stability,ion transport and mechanical durability for next-generation Zn-I_(2)battery technologies.展开更多
Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur ca...Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur cathode hinder the practical application of LSBs.In this work,a separator loaded with the Eu_(2)O_(3-δ)nanoparticles/carbon nanotube interlayer is designed to immobilize Li PSs and catalyze their conversion reaction.The oxygen-deficient Eu_(2)O_(3-δ)nanoparticles,with abundant catalytic sites,promote Li PSs conversion kinetics even at high current densities.Moreover,the unique 4f electronic structure of Eu_(2)O_(3-δ)effectively mitigates undesired sulfur cathode crossover,significantly enhancing the cycling performance of LSBs.Specifically,a high capacity of 620.7 mAh/g at a rate of 5 C is achieved,maintaining at 545 mAh/g after 300 cycles at 1 C.This work demonstrates the potential application of rare earth catalysts in LSBs,offering new research avenues for promoting dynamic conversion design in electrocatalysts.展开更多
Lithium-sulfur batteries(LSBs)have become a favorable contender for next-generation electrochemical energy storage systems due to their outstanding features such as high energy density,low cost,and environmental frien...Lithium-sulfur batteries(LSBs)have become a favorable contender for next-generation electrochemical energy storage systems due to their outstanding features such as high energy density,low cost,and environmental friendliness.However,the commercialization of LSBs is still characterized by critical issues such as low sulfur utilization,short cycle life,and poor rate performance,which need to be resolved.Single-atom catalysts,with their outstanding features such as ultra-high atom utilization rate close to 100%and adjustable coordination configuration,have received extensive attention in the field of lithium-sulfur battery research.In this paper,the preparation and characterization of single-atom catalysts for Li-S batteries are briefly introduced,and the latest research progress of single-atom catalysts for Li-S batteries is reviewed from three aspects:cathode,separator and anode.Finally,the key technical problems and future research directions of single-atom catalysts for lithium-sulfur batteries are also prospected,with a view to promoting the further development of commercialized LSBs.展开更多
Metal organic frameworks(MOFs)are crystalline materials with three-dimensional porous network structure.They are obtained by self-assembly of coordinate bond with metal ions as the nodes and organic ligands as the con...Metal organic frameworks(MOFs)are crystalline materials with three-dimensional porous network structure.They are obtained by self-assembly of coordinate bond with metal ions as the nodes and organic ligands as the connecting chains.MOFs have attracted extensive attention from researchers over the years due to their clear pore and rich topological structure.As the typical powder materials,a specific separator manufacturing process must be possessed when incorporating MOFs into lithium sulfur batteries separator.This mini review summarized the manufacturing process of MOFs separator for LSBs in recent years,and summed up the effects and mechanisms of separators prepared by various separator-forming processes on the performance of LSBs,the potential for industrialization of different separator manufacturing processes is also mentioned briefly.展开更多
Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-su...Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-sulfur batteries is seriously impeded by the sluggish multi-electron redox reaction of sulfur species and obstinate shuttle effect of polysulfides.In this study,a porous lanthanum oxychloride(LaOCl)nanofiber is designed as adsorbent and electrocatalyst of polysulfides to regulate the redox kinetics and suppress shuttling of sulfur species.Benefiting from the porous architecture and luxuriant active site of LaOCl nanofibers,the meliorative polarization effect and sulfur expansion can be accomplished.The LaOCl/S electrode exhibits an initial discharge specific capacity of 1112.3 mAh/g at 0.1 C and maintains a superior cycling performance with a slight decay of 0.02%per cycle over 1000 cycles at 1.0 C.Furthermore,even under a high sulfur loading of 4.6mg/cm^(2),the S cathode with LaOCl nanofibers still retains a high reversible areal capacity of 4.2 mAh/cm^(2)at 0.2 C and a stable cycling performance.Such a porous host expands the application of rare earth based catalysts in lithium-sulfur batteries and provides an alternative approach to facilitate the polysulfides conversion kinetics.展开更多
A novel[3]rotaxane,featuring two hydrogen-bonded aramide azo-macrocycles mechanically interlocked on a dumbbell with distinct recognition sites,a secondary dialkylammonium(AM)unit and a 4,4'-bipyridinium(BP)unit,h...A novel[3]rotaxane,featuring two hydrogen-bonded aramide azo-macrocycles mechanically interlocked on a dumbbell with distinct recognition sites,a secondary dialkylammonium(AM)unit and a 4,4'-bipyridinium(BP)unit,has been synthesized.This multi-stimuli-responsive[3]rotaxane exhibits unique molecular motion,with the macrocycles shuttling along the axle in response to acid-base reactions,temperature changes,solvent variations,and light irradiation.The molecular shuttle and reversibility were investigated by^(1)H NMR,2D NOESY,HRESI-MS,and UV-vis spectroscopy.This study provides a rare example of a higher order rotaxane with multi-stimuli responsiveness,highlighting its potential for multi-state control over the motion of interlocked rings on an axle.The ability to manipulate the molecular motion of the macrocycles through various external triggers offers insights for future developments in molecular machinery and adaptive materials.展开更多
Lithium-sulfur(Li-S)batteries hold great promise for next-generation energy storage,yet suffer from sluggish redox kinetics and polysulfide shuttling.Herein,a novel Ni_(3)S_(2)/Ni_(2)B heterostructure is developed to ...Lithium-sulfur(Li-S)batteries hold great promise for next-generation energy storage,yet suffer from sluggish redox kinetics and polysulfide shuttling.Herein,a novel Ni_(3)S_(2)/Ni_(2)B heterostructure is developed to improve sulfur electrochemistry by synergistically enhancing polysulfide fixation and catalytic conversions.Fabricated through mild sequential boronation and sulfurization,this hybrid nanocatalyst integrates the strong polysulfide adsorbability and high conductivity of Ni_(2)B with the high catalytic activity of Ni_(3)S_(2).More importantly,the as-constructed heterointerface inspires new,highly catalytic sites that smooth consecutive sulfur conversions with lower energy barriers,while the built-in electric fields promote directional charge transfer,collectively contributing to fast-kinetic and highly efficient sulfur redox reactions.As a result,Li-S cells incorporating the Ni_(3)S_(2)/Ni_(2)B nanocatalyst exhibit excellent cyclability,with minimal capacity decay of 0.017%per cycle over 900 cycles at 1 C and a superb rate capability of up to 5 C.Even under demanding conditions,such as a high sulfur loading of 5.0 mg cm^(-2)and a low electrolyte-to-sulfur(E/S)ratio of 4.8 mL g^(-1),high capacity and cyclability are maintained,highlighting the great potential of this unique heterointerface engineering in advancing high-performance and practically viable Li-S batteries.展开更多
Lithium-sulfur batteries(LSBs)hold significant promise as advanced energy storage systems due to their high energy density,low cost,and environmental advantages.However,despite recent advancements,their practical ener...Lithium-sulfur batteries(LSBs)hold significant promise as advanced energy storage systems due to their high energy density,low cost,and environmental advantages.However,despite recent advancements,their practical energy density still falls short of the levels required for commercial viability.The energy density is critically dependent on both sulfur loading and the amount of electrolyte used.Highsulfur loading coupled with lean electrolyte conditions presents several challenges,including the insulating nature of sulfur and Li_(2)S,insufficient electrolyte absorption,degradation of the cathode structure,severe lithium polysulfide shuttling,slow redox reaction kinetics,and instability of the Li metal anode.MXenes-based materials,with their metallic conductivity,large polar surfaces,and abundant active sites,have been identified as promising electrocatalysts to improve the redox reactions in LSBs.This review focuses on the significance and challenges associated with high-sulfur loading and lean electrolytes in LSBs,highlighting recent advancements in MXenes-based electrocatalysts aimed at optimizing sulfur cathodes and lithium anodes.It provides a comprehensive discussion on MXenes as both active materials and substrates in LSBs,with the goal of enhancing understanding of the regulatory mechanisms that govern sulfur conversion reactions and lithium plating/stripping behavior.Finally,the review explores future opportunities for MXenes-based electrocatalysts,paving the way for the practical application of LSBs.展开更多
Lithium-selenium(Li-Se)batteries have attracted increasing attention as one of the next-generation battery systems due to much higher electronic conductivity and comparable volumetric capacity of Se compared to the po...Lithium-selenium(Li-Se)batteries have attracted increasing attention as one of the next-generation battery systems due to much higher electronic conductivity and comparable volumetric capacity of Se compared to the popular sulfur cathode.However,its practical application still faces great challenges,especially the rapid capacity decay triggered by the loss of active Se species.A comprehensive review to uncover the in-depth failure mechanism and provide targeted solutions to promote the stable operation of Li-Se batteries is urgently needed.This review systematically summarizes the strategies in the new perspective,focusing on the optimization of Se utilization in Li-Se batteries by keeping a high Se maintenance in the cathode and accelerating the electrochemical kinetics of lithium polyselenides(LiPSe)conversion.On the basis of stru ctural design and Li_(2)Se active material introduction to accommodate volume expansion,blocking s huttle transport of LiPSe by physical/chemical adsorption,bonding Se with polymers or cathode electrolyte interphase(CEI)construction,and catalytic design to accelerate the conversion of LiPSe,different strategies for improving the utilization of Se have been evaluated and discussed.To address the inevitable loss of Se,prospects on inactive Se reactivation and Li protection are detailedly proposed and analyzed referring to the chemistry and corrosion science.Additionally,the perspectives on the future design and comprehensive parameter evaluations for the optimization of Li-Se batteries are recommended.This review comprehensively explains the causes and solutions of capacity fading and provides potential efforts for lifespan expansion of batteries,shedding light on the future development of Li-Se batteries.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11204016)
文摘We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.
基金supported by the National Key Research and Development Program of China (No. 2016YFA0203102)the National Basic Research Program of China (No. 2015CB932003)+1 种基金the National Natural Science Foundation of China (Nos. 21777173, 21522705)the support from the Youth Innovation Promotion Association CAS
文摘Biochar is extensively used as an effective soil amendment for environmental remediation.In addition to its strong contaminant sorption capability, biochar also plays an important role in chemical transformation of contaminant due to its inherent redox-active moieties.However, the transformation efficiency of inorganic contaminants is generally very limited when the direct adsorption of contaminants on biochar is inefficient. The present study demonstrates the role of Fe ion as an electron shuttle to enhance Cr(Ⅵ) reduction by biochars. Batch experiments were conducted to examine the effects of Fe(Ⅲ) levels,pyrolysis temperature of biochar, initial solution pH, and biochar dosage on the efficiency of Cr(Ⅵ) removal. Results showed a significant enhancement in Cr(Ⅵ) reduction with an increase in Fe(Ⅲ) concentration and a decrease of initial pH. Biochar produced at higher pyrolysis temperatures(e.g., 700°C) favored Cr(Ⅵ) removal, especially in the presence of Fe(Ⅲ), while a higher biochar dosage proved unfavorable likely due to the agglomeration or precipitation of biochar. Speciation analysis of Fe and Cr elements on the surface of biochar and in the solution further confirmed the role of Fe ion as an electron shuttle between biochar and Cr(Ⅵ). The present findings provide a potential strategy for the advanced treatment of Cr(Ⅵ) at low concentrations as well as an insight into the environmental fate of Cr(Ⅵ) and other micro-pollutants in soil or aqueous compartments containing Fe and natural or engineered carbonaceous materials.
基金supported by the Key Research and Development Program of Guangdong Province(No.2019B110205004)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08L213)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0403)the National Natural Science Foundation of China(No.52000039)。
文摘Carbonaceous materials can accelerate extracellular electron transfer for the biotransformation of many recalcitrant,redox-sensitive contaminants and have received considerable attention in fields related to anaerobic bioremediation.As important electron shuttles(ESs),carbonaceous materials effectively participate in redox biotransformation processes,especially microbially-driven Fe reduction or oxidation coupled with pollutions transformation and anaerobic fermentation for energy and by-product recovery.The related bioprocesses are reviewed here to show that carbonaceous ESs can facilitate electron transfer between microbes and extracellular substrates.The classification and characteristics of carbon-containing ESs are summarized,with an emphasis on activated carbon,graphene,carbon nanotubes and carbonbased immobilized mediators.The influencing factors,including carbon material properties(redox potential,electron transfer capability and solubility)and environmental factors(temperature,p H,substrate concentration and microbial species),on pollution catalytic efficiency are discussed.Furthermore,we briefly describe the prospects of carbonaceous ESs in the field of microbial-driven environmental remediation.
文摘The figure of shuttle distribution one side of the loom has been used to show the convel-sion of shuttle in picking process.The characteristics of the figure have been analysed andused to introduce a simple method for shuttle starting distribution.
基金support of the National Natural Science Foundation of China(22075131 and 22078265)the Shaanxi Fundamental Science Research Project for Mathematics and Physics under Grants(No.22JSZ005)the State-Key Laboratory of Multiphase Complex Systems(No.MPCS-2021-A).
文摘Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties.In this work,we propose an autogenously transformed CoWO_(4)/WO_(2) heterojunction catalyst,integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity.CoWO_(4) effectively captures polysulfides,while the CoWO_(4)/WO_(2) interface facilitates their S-S bond activation on heterogenous catalytic sites.Benefiting from its directional intercalation channels,CoWO_(4) not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport.Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite.As a result,the CoWO_(4)/WO_(2) heterostructure demonstrates significantly enhanced catalytic performance,delivering a high capacity of 1262 mAh g^(−1) at 0.1 C.Furthermore,its rate capability and high sulfur loading performance are markedly improved,surpassing the limitations of its single-component counterparts.This study provides new insights into the catalytic mechanisms governing Li-S chemistry and offers a promising strategy for the rational design of high-performance Li-S battery catalysts.
基金supported by the financial support from the National Research Foundation,Singapore,under its Singapore-China Joint Flagship Project(Clean Energy).
文摘Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+6 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_1429)the National Key R&D Program of China(2024YFE0109200)the Fundamental Research Funds for the Central Universities(No.2024300440)Guangdong Basic and Applied Basic Research Foundation(2025A1515011098)the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)Ji'an Science and Technology Plan Project(2024H-100301)。
文摘Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
基金supported by Applied Basic Research Joint Fund Project of Yunnan Province,No.202301AY070001-200Middle-aged Academic and Technical Training Project for High-Level Talents,No.202105AC160065+1 种基金Yunnan Clinical Medical Center for Neurological and Cardiovascular Diseases,No.YWLCYXZX2023300077Key Clinical Specialty of Neurology in Yunnan Province,No.300064(all to CL)。
文摘Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
基金supported by the National Natural Science Foundation of China(No.52371240)the Natural Science Foundation of Jiangsu Province(No.BK20230556)+2 种基金China Postdoctoral Science Foundation(No.2022M722686)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB701)The Big Data Computing Center of Southeast University.
文摘Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the National Natural Science Foundation of China(Nos.22175108&22379086)the Natural Scientific Foundation(ZR2022ZD27)Taishan Scholars Program of Shandong Province(NO.tstp20221105).
文摘Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes,including high ionic conductivity,low flammability,natural abundance,and high volumetric capacity,Zn-I_(2)batteries offer significant potential for grid-level deployment.This review provides a comprehensive overview of recent progress in three critical domains:positive-electrode engineering,zinc anode stabilization,and in situ characterization methods.On the cathode side,anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I−/I_(2)conversion.Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates(I_(3)−/I_(5)−),offering new insights into electrolyte-electrode interactions and guiding the development of functional additives to suppress shuttle effects.For the zinc anode,innovations such as pro-tective interfacial layers,three-dimensional host frameworks,and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions,thus improving cycling stability and coulombic efficiency.Despite these advances,challenges remain in achieving long-term reversibility and structural integrity under practical conditions.Future directions include the design of synergistic electrolyte systems,and integrated electrode architectures that simultaneously optimize chemical stability,ion transport and mechanical durability for next-generation Zn-I_(2)battery technologies.
基金the financial support from the National Natural Science Foundation of China(Nos.52104312,22278329,22271229,22105153)Qin Chuangyuan Talent Project of Shaanxi Province(Nos.2021QCYRC4-43,QCYRCXM-2022-308)the State Key Laboratory for Electrical Insulation and Power Equipment(No.EIPE23125)。
文摘Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur cathode hinder the practical application of LSBs.In this work,a separator loaded with the Eu_(2)O_(3-δ)nanoparticles/carbon nanotube interlayer is designed to immobilize Li PSs and catalyze their conversion reaction.The oxygen-deficient Eu_(2)O_(3-δ)nanoparticles,with abundant catalytic sites,promote Li PSs conversion kinetics even at high current densities.Moreover,the unique 4f electronic structure of Eu_(2)O_(3-δ)effectively mitigates undesired sulfur cathode crossover,significantly enhancing the cycling performance of LSBs.Specifically,a high capacity of 620.7 mAh/g at a rate of 5 C is achieved,maintaining at 545 mAh/g after 300 cycles at 1 C.This work demonstrates the potential application of rare earth catalysts in LSBs,offering new research avenues for promoting dynamic conversion design in electrocatalysts.
基金supported by the Shenzhen Key Basic Research Project:Ionic Liquid-Assisted Synthesis of Single Catalyst and Its Applications in Lithium Sulfur Batteries(GXWD20220817125846003)Major Instrument Project of National Natural Science Foundation of China(62127807)Shenzhen Sustainable Development Special Project(KCXFZ20201221173000001).
文摘Lithium-sulfur batteries(LSBs)have become a favorable contender for next-generation electrochemical energy storage systems due to their outstanding features such as high energy density,low cost,and environmental friendliness.However,the commercialization of LSBs is still characterized by critical issues such as low sulfur utilization,short cycle life,and poor rate performance,which need to be resolved.Single-atom catalysts,with their outstanding features such as ultra-high atom utilization rate close to 100%and adjustable coordination configuration,have received extensive attention in the field of lithium-sulfur battery research.In this paper,the preparation and characterization of single-atom catalysts for Li-S batteries are briefly introduced,and the latest research progress of single-atom catalysts for Li-S batteries is reviewed from three aspects:cathode,separator and anode.Finally,the key technical problems and future research directions of single-atom catalysts for lithium-sulfur batteries are also prospected,with a view to promoting the further development of commercialized LSBs.
基金financially supported by the University Natural Science Research Key Project of Anhui Province(Nos.KJ2021A1091,2023AH051619)Innovation and Entrepreneurship Training Program for College Students(No.202310377030)Scientific Research Start Foundation Project of Chuzhou University(No.2022qd011)。
文摘Metal organic frameworks(MOFs)are crystalline materials with three-dimensional porous network structure.They are obtained by self-assembly of coordinate bond with metal ions as the nodes and organic ligands as the connecting chains.MOFs have attracted extensive attention from researchers over the years due to their clear pore and rich topological structure.As the typical powder materials,a specific separator manufacturing process must be possessed when incorporating MOFs into lithium sulfur batteries separator.This mini review summarized the manufacturing process of MOFs separator for LSBs in recent years,and summed up the effects and mechanisms of separators prepared by various separator-forming processes on the performance of LSBs,the potential for industrialization of different separator manufacturing processes is also mentioned briefly.
基金supported by the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(No.22JK0411)the Natural Science Basic Research Program of Shaanxi Province(No.2023-JC-QN-0165)the National Natural Science Foundation of China(No.21603109).
文摘Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-sulfur batteries is seriously impeded by the sluggish multi-electron redox reaction of sulfur species and obstinate shuttle effect of polysulfides.In this study,a porous lanthanum oxychloride(LaOCl)nanofiber is designed as adsorbent and electrocatalyst of polysulfides to regulate the redox kinetics and suppress shuttling of sulfur species.Benefiting from the porous architecture and luxuriant active site of LaOCl nanofibers,the meliorative polarization effect and sulfur expansion can be accomplished.The LaOCl/S electrode exhibits an initial discharge specific capacity of 1112.3 mAh/g at 0.1 C and maintains a superior cycling performance with a slight decay of 0.02%per cycle over 1000 cycles at 1.0 C.Furthermore,even under a high sulfur loading of 4.6mg/cm^(2),the S cathode with LaOCl nanofibers still retains a high reversible areal capacity of 4.2 mAh/cm^(2)at 0.2 C and a stable cycling performance.Such a porous host expands the application of rare earth based catalysts in lithium-sulfur batteries and provides an alternative approach to facilitate the polysulfides conversion kinetics.
基金supported by the National Natural Science Foundation of China(No.22271202 to L.Yuan,No.22201193 to X.Li)the Sichuan Science and Technology Program(No.2023NSFSC0109 to X.Li)+2 种基金the Fundamental Research Funds for the Central Universities and the Hundred Talent Program of Sichuan University(No.YJ2021158 to X.Li)Sichuan University Interdisciplinary Innovation Fund(X.Li)Open Project of State Key Laboratory of Supramolecular Structure and Materials(No.SKLSSM2024037)。
文摘A novel[3]rotaxane,featuring two hydrogen-bonded aramide azo-macrocycles mechanically interlocked on a dumbbell with distinct recognition sites,a secondary dialkylammonium(AM)unit and a 4,4'-bipyridinium(BP)unit,has been synthesized.This multi-stimuli-responsive[3]rotaxane exhibits unique molecular motion,with the macrocycles shuttling along the axle in response to acid-base reactions,temperature changes,solvent variations,and light irradiation.The molecular shuttle and reversibility were investigated by^(1)H NMR,2D NOESY,HRESI-MS,and UV-vis spectroscopy.This study provides a rare example of a higher order rotaxane with multi-stimuli responsiveness,highlighting its potential for multi-state control over the motion of interlocked rings on an axle.The ability to manipulate the molecular motion of the macrocycles through various external triggers offers insights for future developments in molecular machinery and adaptive materials.
基金supported by the National Natural Science Foundation of China(22379069,22109072)the Fundamental Research Funds for the Central Universities(30922010304)。
文摘Lithium-sulfur(Li-S)batteries hold great promise for next-generation energy storage,yet suffer from sluggish redox kinetics and polysulfide shuttling.Herein,a novel Ni_(3)S_(2)/Ni_(2)B heterostructure is developed to improve sulfur electrochemistry by synergistically enhancing polysulfide fixation and catalytic conversions.Fabricated through mild sequential boronation and sulfurization,this hybrid nanocatalyst integrates the strong polysulfide adsorbability and high conductivity of Ni_(2)B with the high catalytic activity of Ni_(3)S_(2).More importantly,the as-constructed heterointerface inspires new,highly catalytic sites that smooth consecutive sulfur conversions with lower energy barriers,while the built-in electric fields promote directional charge transfer,collectively contributing to fast-kinetic and highly efficient sulfur redox reactions.As a result,Li-S cells incorporating the Ni_(3)S_(2)/Ni_(2)B nanocatalyst exhibit excellent cyclability,with minimal capacity decay of 0.017%per cycle over 900 cycles at 1 C and a superb rate capability of up to 5 C.Even under demanding conditions,such as a high sulfur loading of 5.0 mg cm^(-2)and a low electrolyte-to-sulfur(E/S)ratio of 4.8 mL g^(-1),high capacity and cyclability are maintained,highlighting the great potential of this unique heterointerface engineering in advancing high-performance and practically viable Li-S batteries.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang University(Grant No.2024KQ102 and 2024KQ131)the National Natural Science Foundation of China(Grant No.524B2020,51925202,U22A20141,52432004,U23A20575,52472183,and 22379039).
文摘Lithium-sulfur batteries(LSBs)hold significant promise as advanced energy storage systems due to their high energy density,low cost,and environmental advantages.However,despite recent advancements,their practical energy density still falls short of the levels required for commercial viability.The energy density is critically dependent on both sulfur loading and the amount of electrolyte used.Highsulfur loading coupled with lean electrolyte conditions presents several challenges,including the insulating nature of sulfur and Li_(2)S,insufficient electrolyte absorption,degradation of the cathode structure,severe lithium polysulfide shuttling,slow redox reaction kinetics,and instability of the Li metal anode.MXenes-based materials,with their metallic conductivity,large polar surfaces,and abundant active sites,have been identified as promising electrocatalysts to improve the redox reactions in LSBs.This review focuses on the significance and challenges associated with high-sulfur loading and lean electrolytes in LSBs,highlighting recent advancements in MXenes-based electrocatalysts aimed at optimizing sulfur cathodes and lithium anodes.It provides a comprehensive discussion on MXenes as both active materials and substrates in LSBs,with the goal of enhancing understanding of the regulatory mechanisms that govern sulfur conversion reactions and lithium plating/stripping behavior.Finally,the review explores future opportunities for MXenes-based electrocatalysts,paving the way for the practical application of LSBs.
基金supported by the China Scholarship Council(No.201809370046)a scholarship from the Laboratory of Inorganic Materials Chemistry,Universitéde Namur+5 种基金the National Key R&D Program of China(2016YFA0202602)the National Natural Science Foundation of China(No.U1663225,22293020,22293022 and 52103342)the Program of Introducing Talents of Discipline to Universities-Plan 111(Grant No.B20002)from the Ministry of Science and Technologythe Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of EducationBelgium-China Governmental Key Cooperation Program WBI-MOST(SUB/2021/IND493971/524448)the“Plan of relance”Wallonia Government(2310153-Bat Factory)。
文摘Lithium-selenium(Li-Se)batteries have attracted increasing attention as one of the next-generation battery systems due to much higher electronic conductivity and comparable volumetric capacity of Se compared to the popular sulfur cathode.However,its practical application still faces great challenges,especially the rapid capacity decay triggered by the loss of active Se species.A comprehensive review to uncover the in-depth failure mechanism and provide targeted solutions to promote the stable operation of Li-Se batteries is urgently needed.This review systematically summarizes the strategies in the new perspective,focusing on the optimization of Se utilization in Li-Se batteries by keeping a high Se maintenance in the cathode and accelerating the electrochemical kinetics of lithium polyselenides(LiPSe)conversion.On the basis of stru ctural design and Li_(2)Se active material introduction to accommodate volume expansion,blocking s huttle transport of LiPSe by physical/chemical adsorption,bonding Se with polymers or cathode electrolyte interphase(CEI)construction,and catalytic design to accelerate the conversion of LiPSe,different strategies for improving the utilization of Se have been evaluated and discussed.To address the inevitable loss of Se,prospects on inactive Se reactivation and Li protection are detailedly proposed and analyzed referring to the chemistry and corrosion science.Additionally,the perspectives on the future design and comprehensive parameter evaluations for the optimization of Li-Se batteries are recommended.This review comprehensively explains the causes and solutions of capacity fading and provides potential efforts for lifespan expansion of batteries,shedding light on the future development of Li-Se batteries.