期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
An Adaptive Cooperated Shuffled Frog-Leaping Algorithm for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Processes
1
作者 Lianqiang Wu Deming Lei Yutong Cai 《Computers, Materials & Continua》 2025年第5期1771-1789,共19页
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ... Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility. 展开更多
关键词 Batch processing machine parallel machine scheduling shuffled frog-leaping algorithm fabric dyeing process machine eligibility
在线阅读 下载PDF
Shuffled complex evolution coupled with stochastic ranking for reservoir scheduling problems 被引量:3
2
作者 Jing-qiao Mao Ming-ming Tian +3 位作者 Teng-fei Hu Kang Ji Ling-quan Dai Hui-chao Dai 《Water Science and Engineering》 EI CAS CSCD 2019年第4期307-318,共12页
This paper introduces an optimization method(SCE-SR)that combines shuffled complex evolution(SCE)and stochastic ranking(SR)to solve constrained reservoir scheduling problems,ranking individuals with both objectives an... This paper introduces an optimization method(SCE-SR)that combines shuffled complex evolution(SCE)and stochastic ranking(SR)to solve constrained reservoir scheduling problems,ranking individuals with both objectives and constrains considered.A specialized strategy is used in the evolution process to ensure that the optimal results are feasible individuals.This method is suitable for handling multiple conflicting constraints,and is easy to implement,requiring little parameter tuning.The search properties of the method are ensured through the combination of deterministic and probabilistic approaches.The proposed SCE-SR was tested against hydropower scheduling problems of a single reservoir and a multi-reservoir system,and its performance is compared with that of two classical methods(the dynamic programming and genetic algorithm).The results show that the SCE-SR method is an effective and efficient method for optimizing hydropower generation and locating feasible regions quickly,with sufficient global convergence properties and robustness.The operation schedules obtained satisfy the basic scheduling requirements of reservoirs. 展开更多
关键词 Reservoir scheduling Optimization method Constraint handling shuffled complex evolution Stochastic ranking
在线阅读 下载PDF
Membrane-inspired quantum shuffled frog leaping algorithm for spectrum allocation 被引量:2
3
作者 Hongyuan Gao Jinlong Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期679-688,共10页
To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane... To solve discrete optimization difficulty of the spectrum allocation problem,a membrane-inspired quantum shuffled frog leaping(MQSFL) algorithm is proposed.The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm,which is an effective discrete optimization algorithm.Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems.By hybridizing the quantum frog colony optimization and membrane computing,the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure.The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time.Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing. 展开更多
关键词 quantum shuffled frog leaping algorithm membrane computing spectrum allocation cognitive radio
在线阅读 下载PDF
Improved Shuffled Frog Leaping Algorithm Optimizing Integral Separated PID Control for Unmanned Hypersonic Vehicle 被引量:2
4
作者 梁冰冰 江驹 +1 位作者 甄子洋 马坤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期110-114,共5页
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co... To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller. 展开更多
关键词 hypersonic vehicles flight control shuffled frog leaping algorithm unmanned aerial vehicles(UAVs)
在线阅读 下载PDF
Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment 被引量:2
5
作者 ZHAO Yang LIU Jicheng +1 位作者 JIANG Ju ZHEN Ziyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1007-1019,共13页
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d... The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment. 展开更多
关键词 dynamic weapon-target assignment(DWTA)problem shuffled frog leaping algorithm(SFLA) air combat research
在线阅读 下载PDF
Modified Shuffled Frog Leaping Algorithm for Solving Economic Load Dispatch Problem 被引量:2
6
作者 Priyanka Roy A. Chakrabarti 《Energy and Power Engineering》 2011年第4期551-556,共6页
In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem... In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system. 展开更多
关键词 ECONOMIC Load DISPATCH Modified shuffled FROG Leaping ALGORITHM GENETIC ALGORITHM
在线阅读 下载PDF
Control Strategy for a Quadrotor Based on a Memetic Shuffled Frog Leaping Algorithm 被引量:1
7
作者 Nour Ben Ammar Hegazy Rezk Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第6期4081-4100,共20页
This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler form... This work presents a memetic Shuffled Frog Leaping Algorithm(SFLA)based tuning approach of an Integral Sliding Mode Controller(ISMC)for a quadrotor type of Unmanned Aerial Vehicles(UAV).Based on the Newton–Euler formalism,a nonlinear dynamic model of the studied quadrotor is firstly established for control design purposes.Since the main parameters of the ISMC design are the gains of the sliding surfaces and signum functions of the switching control law,which are usually selected by repetitive and time-consuming trials-errors based procedures,a constrained optimization problem is formulated for the systematically tuning of these unknown variables.Under time-domain operating constraints,such an optimization-based tuning problem is effectively solved using the proposed SFLA metaheuristic with an empirical comparison to other evolutionary computation-and swarm intelligence-based algorithms such as the Crow Search Algorithm(CSA),Fractional Particle Swarm Optimization Memetic Algorithm(FPSOMA),Ant Bee Colony(ABC)and Harmony Search Algorithm(HSA).Numerical experiments are carried out for various sets of algorithms’parameters to achieve optimal gains of the sliding mode controllers for the altitude and attitude dynamics stabilization.Comparative studies revealed that the SFLA is a competitive and easily implemented algorithm with high performance in terms of robustness and non-premature convergence.Demonstrative results verified that the proposed metaheuristicsbased approach is a promising alternative for the systematic tuning of the effective design parameters in the integral sliding mode control framework. 展开更多
关键词 QUADROTOR MODELING integral sliding mode control gains tuning advanced metaheuristics memetic algorithms shuffled frog leaping algorithm
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
8
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) Convolutional neural network(CNN)
在线阅读 下载PDF
Test Case Prioritization in Unit and Integration Testing:A Shuffled-Frog-Leaping Approach
9
作者 Atulya Gupta Rajendra Prasad Mahapatra 《Computers, Materials & Continua》 SCIE EI 2023年第3期5369-5387,共19页
Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subject... Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively. 展开更多
关键词 Test case prioritization unit testing shuffled frog leaping approach memetic based optimization algorithm integration testing
在线阅读 下载PDF
A ε-indicator-based shuffled frog leaping algorithm for many-objective optimization problems
10
作者 WANG Na SU Yuchao +2 位作者 CHEN Xiaohong LI Xia LIU Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期142-155,共14页
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu... Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors. 展开更多
关键词 evolutionary algorithm many-objective optimization shuffled frog leaping algorithm(SFLA) ε-indicator
在线阅读 下载PDF
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm 被引量:9
11
作者 Sun Cheng-Yu Wang Yan-Yan +1 位作者 Wu Dun-Shi Qin Xiao-Jun 《Applied Geophysics》 SCIE CSCD 2017年第4期551-558,622,共9页
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa... At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems. 展开更多
关键词 Shuffle frog-leaping algorithm Rayleigh wave dispersion curves non-linear inversion shear wave velocity
在线阅读 下载PDF
An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling with No Precedence Between Some Stages
12
作者 Zhenghui Yin Deming Lei Bo Yang 《Complex System Modeling and Simulation》 EI 2024年第3期292-302,共11页
Hybrid flow shop scheduling problem(HFSP)has been extensively considered,however,some reallife conditions are seldom investigated.In this study,HFsP with no precedence between some stages is solved and an adaptive shu... Hybrid flow shop scheduling problem(HFSP)has been extensively considered,however,some reallife conditions are seldom investigated.In this study,HFsP with no precedence between some stages is solved and an adaptive shuffled frog-leaping algorithm(ASFLA)is developed to optimize makespan.A new solution representation and a decoding procedure are presented,an adaptive memeplex search and dynamical population shuffling are implemented together.Many computational experiments are implemented.Computational results prove that the new strategies of ASFLA are effective and ASFLA is very competitive in solving HFSP with no precedence between some stages. 展开更多
关键词 hybrid-flow shop scheduling shuffled frog-leaping algorithm precedence
原文传递
A Shufled Frog-Leaping Algorithm with Competition for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Process
13
作者 Mingbo Li Deming Lei 《Computer Modeling in Engineering & Sciences》 2025年第5期1789-1808,共20页
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a... As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP. 展开更多
关键词 Batch processing machines shuffled frog-leaping algorithm COMPETITION parallel machines scheduling
在线阅读 下载PDF
基于改进YOLOv8-Track的芝麻单株蒴果检测计数研究
14
作者 李琛昊 王川 +5 位作者 李国强 赵巧丽 杨萍 王凯 常升龙 郑国清 《河南农业科学》 北大核心 2025年第4期155-166,共12页
单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准... 单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准模型,在特征融合网络中引入小目标检测头和Shuffle attention注意力机制,在模型后处理阶段引入MPDIOU损失函数,构建了SD-YOLOv8-Track模型。然后利用模型ByteTrack多目标追踪算法的ID计数方法,以芝麻单株旋转视频作为模型输入,追踪统计芝麻蒴果数。结果表明,以单幅图片为输入,SD-YOLOv8-Track模型检测蒴果的准确率、召回率、平均精度分别为92.25%、92.4%、92.58%,比原模型YOLOv8-Track分别提高5.94、6.6、6.31百分点。以单株旋转视频为输入,SD-YOLOv8-Track模型的多目标追踪准确率、多目标追踪精确率分别为89.42%、88.23%,比原模型分别提高4.23、4.60百分点。SD-YOLOv8-Track模型检测蒴果的平均计数准确率、漏检率、误检率分别为93.27%、3.85%、2.88%,平均计数准确率比原模型提高5.61百分点,漏检率和误检率比原模型分别降低3.84、1.77百分点。改进后的SD-YOLOv8-Track模型具有较好的芝麻单株蒴果检测性能,适用于芝麻单株蒴果的动态完整计数。 展开更多
关键词 芝麻蒴果 检测计数 多目标追踪 动态计数 Shuffle attention MPDIOU YOLOv8-Track
在线阅读 下载PDF
基于改进YOLO v8的苹果叶部病害检测方法
15
作者 曾林涛 马嘉昕 +1 位作者 丁羽 许晓东 《江苏农业科学》 北大核心 2025年第5期147-156,共10页
针对苹果叶部病害在自然环境下形态和颜色特征较为复杂、区分度较低等特点,提出一种高效的病害检测模型,为病害的预防与科学化治理提供准确的依据。基于YOLO v8算法,在主干网络(backbone)末端,加入注意力机制Shuffle Attention(SA),根... 针对苹果叶部病害在自然环境下形态和颜色特征较为复杂、区分度较低等特点,提出一种高效的病害检测模型,为病害的预防与科学化治理提供准确的依据。基于YOLO v8算法,在主干网络(backbone)末端,加入注意力机制Shuffle Attention(SA),根据样本分布特点进行数据增强,引入Mixup、Mosaic、Random等数据增强方法增加特征表达能力,在提高检测性能的同时,不显著增加计算复杂度;在neck末端,使C2f模块与可变形卷积神经网络模块(Deformable Conv V2)相结合,以提升复杂背景下的检测性能,从而提高检测准确度,有效提高模型性能;为克服CIoU损失函数的局限性,采用MPDIoU损失函数,解决CIoU在特定场景下的限制。结果表明,相较于原始YOLO v8算法,本研究算法的平均准确率提升3.5百分点,mAP@0.5∶0.95提升4.6百分点,精确率提升3.6百分点,说明改进的算法在苹果叶部病害检测方面取得有效成果。 展开更多
关键词 YOLO v8 苹果叶部病害 目标检测 Shuffle Attention C2f_DCNV2 MPDIoU
在线阅读 下载PDF
改进YOLOv8的遥感图像飞机目标轻量化检测算法 被引量:1
16
作者 王莹 张上 +2 位作者 胡益民 王恒涛 院永莹 《遥感信息》 北大核心 2025年第1期134-141,共8页
针对遥感飞机目标检测存在模型体积和计算量较大的问题,提出一种基于YOLOv8的轻量化遥感飞机目标检测算法。首先,在主干网络中引入一种融合SRU和CRU的C2f_ScConv模块,通过空间重建和通道重建来减少中间特征映射冗余,并增强飞机目标特征... 针对遥感飞机目标检测存在模型体积和计算量较大的问题,提出一种基于YOLOv8的轻量化遥感飞机目标检测算法。首先,在主干网络中引入一种融合SRU和CRU的C2f_ScConv模块,通过空间重建和通道重建来减少中间特征映射冗余,并增强飞机目标特征表示,在保证精度的同时实现模型轻量化。然后,在头部网络中融入轻量型注意力机制shuffle attention,利用shuffle unit捕捉通道和空间维度的特征依赖,利用channel shuffle算子实现不同子特征之间的信息交流,进而提高飞机目标检测精度。最后,使用Inner-CIoU作为损失函数,加速样本收敛。实验表明,改进算法相较于YOLOv5s、YOLOv7-Tiny、YOLOv8n模型,体积降低57.2%、52.4%、7.9%,计算量降低53.4%、43.6%、7.4%,在保持较高模型检测精度的同时大幅降低了模型的复杂度,达到了轻量化的要求。 展开更多
关键词 飞机目标 YOLOv8 轻量化 C2f_ScConv shuffle attention Inner-IoU
在线阅读 下载PDF
融合LBP与并行注意力机制的微表情识别方法
17
作者 李帅超 李明泽 +1 位作者 孙嘉傲 卢树华 《北京航空航天大学学报》 北大核心 2025年第4期1404-1414,共11页
针对面部微表情变化强度弱、背景噪声干扰及特征区分度较小等问题,提出了一种融合LBP与并行注意力机制的微表情识别网络。该网络将RGB图像输入密集连接改进的Shuffle Stage分支提取面部全局特征,增强上下文语义信息关联;将LBP图像输入... 针对面部微表情变化强度弱、背景噪声干扰及特征区分度较小等问题,提出了一种融合LBP与并行注意力机制的微表情识别网络。该网络将RGB图像输入密集连接改进的Shuffle Stage分支提取面部全局特征,增强上下文语义信息关联;将LBP图像输入多尺度分层卷积神经网络构成的局部纹理特征分支,提取细节信息;双分支特征提取后,在网络后端引入并行注意力机制提高特征融合能力,抑制背景干扰,专注微表情特征兴趣区域;所提方法在CASME、CASME II和SMIC等3个公开数据集上进行了测试,识别准确率分别达到了85.18%、74.53%和81.19%;实验结果表明,所提方法有效提高了微表情识别准确率,优于当前诸多先进方法。 展开更多
关键词 微表情识别 密集连接 Shuffle Stage分支 多尺度分层卷积 并行注意力机制
原文传递
β-葡萄糖苷酶Bgl3热稳定性有益突变的鉴定与结构基础分析
18
作者 许本宏 蒋奕文 +5 位作者 罗敬时 杨向鹏 李广 袁珊 刘玉焕 曹立创 《食品与发酵工业》 北大核心 2025年第15期1-8,共8页
DNA shuffling是蛋白质定向进化的一种常用策略,其优点是可以快速积累多突变效果,但同时由于突变数较多,其中真正发挥作用的突变及其结构基础往往不清楚。β-葡萄糖苷酶是纤维素高效降解的限速酶,良好的热稳定性是影响其实际催化效率的... DNA shuffling是蛋白质定向进化的一种常用策略,其优点是可以快速积累多突变效果,但同时由于突变数较多,其中真正发挥作用的突变及其结构基础往往不清楚。β-葡萄糖苷酶是纤维素高效降解的限速酶,良好的热稳定性是影响其实际催化效率的关键因素。该研究以DNA shuffling策略产生的热稳定性β-葡萄糖苷酶突变体Bgl3-6511(含60个突变,T_(50)值比野生型提高4.6℃)为研究对象,通过序列比对、定点突变和热稳定性测定,对其中的有益突变进行鉴定。结果显示,6个单点突变Y50F、R52H、R56K、V65I、T67A和P143A分别将该酶的T_(50)值提高2.9、4.2、1.5、2.8、3.2、1.2℃。同时,鉴定到5个有害突变将该酶的T_(50)值降低1.0~3.4℃。将获得单点有益突变进行组合,获得T_(50)值提高13.4℃的M6(Y50F/R52H/R56K/V65I/T67A/P143A),说明DNA shuffling策略积累的有害突变确实损害了性能优化。结构分析和分子动力学模拟显示,有益突变主要是通过增强分子内氢键、π-π键和稳定二级结构发挥作用。该研究对Bgl3-6511中的单点有益突变进行鉴定,对其结构基础进行了分析,并获得了热稳定性更加优良的突变酶,相关信息可为其他酶的分子改造提供有益借鉴。 展开更多
关键词 Β-葡萄糖苷酶 热稳定性 DNA shuffling 有益突变 定点突变 结构分析
在线阅读 下载PDF
基于Shuffle Attention相似目标检测——以SA-YOLOv7为例
19
作者 任昱臻 樊中奎 +1 位作者 冯振营 朱梅 《现代信息科技》 2025年第11期106-113,共8页
YOLOv7在目标检测中取得了优异的效果,但对相似物体的检测仍存在误检率较高的问题,其主要原因是YOLOv7对细粒度特征的提取能力不足。为解决上述问题,该研究提出SA-YOLOv7目标检测网络,即在不改变ELAN(Extend Efficient Layer Aggregatio... YOLOv7在目标检测中取得了优异的效果,但对相似物体的检测仍存在误检率较高的问题,其主要原因是YOLOv7对细粒度特征的提取能力不足。为解决上述问题,该研究提出SA-YOLOv7目标检测网络,即在不改变ELAN(Extend Efficient Layer Aggregation Networks)整体结构的前提下,将注意力模块SA(Shuffle Attention)与之融合,形成SA-ELAN模块,以获取更多通道和空间特征信息,进而提高相似物体的检测精确度。模型在公共的手和手套相似物体数据集上开展了大量对比实验,探究了SA加入YOLOv7网络中的数量及位置对结果的影响,揭示了SA发挥作用的底层原理,深化了对注意力机制的理解。实验结果显示:SA-YOLOv7相较于YOLOv7,检测精度提升了7.7%,mAP@0.5:0.95提高了1.8%,与最新的YOLOv11相比,也具有0.9%的检测精度优势。SA-YOLOv7的研究为相似物体检测技术的发展提供了助力。 展开更多
关键词 深度学习 YOLOv7 Shuffle Attention 相似目标检测
在线阅读 下载PDF
Recognition of practical speech emotion using improved shuffled frog leaping algorithm 被引量:4
20
作者 ZHANG Xiaodan HUANG Chengwei +1 位作者 ZHAO Li ZOU Cairong 《Chinese Journal of Acoustics》 2014年第4期441-456,共16页
Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was impro... Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition. 展开更多
关键词 SFLA SVM Recognition of practical speech emotion using improved shuffled frog leaping algorithm
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部