超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local...超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。展开更多
This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowle...This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowledgment(ACK)mechanisms,loss detection,and forward error correction(FEC)in dynamic wireless networks.Unlike the standard QUIC protocol,Flex-QUIC systematically integrates machine learning across three critical modules to achieve high-efficiency operation.First,a contextual multi-armed bandit-based ACK adaptation mechanism optimizes the ACK ratio to reduce wireless channel contention.Second,the adaptive loss detection module utilizes a long short-term memory(LSTM)model to predict the reordering displacement for optimizing the packet reordering tolerance.Third,the FEC transmission scheme jointly adjusts the redundancy level based on the LSTM-predicted loss rate and congestion window state.Extensive evaluations across Wi-Fi,5G,and satellite network scenarios demonstrate that Flex-QUIC significantly improves throughput and latency reduction compared to the standard QUIC and other enhanced QUIC variants,highlighting its adaptability to diverse and dynamic network conditions.Finally,we further discuss open issues in deploying AI-native transport protocols.展开更多
文摘超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。
基金supported in part by the National Key R&D Program of China with Grant number 2019YFB1803400.
文摘This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowledgment(ACK)mechanisms,loss detection,and forward error correction(FEC)in dynamic wireless networks.Unlike the standard QUIC protocol,Flex-QUIC systematically integrates machine learning across three critical modules to achieve high-efficiency operation.First,a contextual multi-armed bandit-based ACK adaptation mechanism optimizes the ACK ratio to reduce wireless channel contention.Second,the adaptive loss detection module utilizes a long short-term memory(LSTM)model to predict the reordering displacement for optimizing the packet reordering tolerance.Third,the FEC transmission scheme jointly adjusts the redundancy level based on the LSTM-predicted loss rate and congestion window state.Extensive evaluations across Wi-Fi,5G,and satellite network scenarios demonstrate that Flex-QUIC significantly improves throughput and latency reduction compared to the standard QUIC and other enhanced QUIC variants,highlighting its adaptability to diverse and dynamic network conditions.Finally,we further discuss open issues in deploying AI-native transport protocols.