Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power elect...With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses,posing significant threats to system security and stability.To achieve reliable short-term voltage stability assessment under large-scale renewable integration,this paper innovatively proposes a response-driven online assessment method based on energy function theory.First,energy modeling of system components is performed based on energy function theory,followed by analysis of energy interaction mechanisms during voltage instability.To address the challenge of traditional energy functions in online applications,a convolutional neural network-long short-term memory(CNNLSTM)hybrid artificial Intelligence approach is introduced.By quantifying the contribution of each energy component to voltage stability,key energy terms are identified.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the voltage unstable equilibrium point(UEP)obtained from offline simulations is used as both the energy threshold and the output of the artificial intelligence model,enabling the construction of an artificial intelligence model for energy threshold prediction.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the unstable equilibrium point(UEP)obtained from offline simulations acts as the output,enabling the construction of an artificial intelligence model for energy threshold prediction.Real-time response data are fed into the model to predict the system's instantaneous energy threshold,which is then compared with the transient energy at fault clearance to evaluate stability.Validation on both a 3-machine,10-bus system and the New England 10-machine,39-bus system confirms the method's adaptability and accuracy.The simulation results demonstrate that the proposed short-term voltage stability assessment model outperforms other methods in both accuracy and computational efficiency.展开更多
In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle ...In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle position,and actual power,lagged features were generated to capture temporal dependencies.Among 24 evaluated models,the ensemble bagging approach achieved the best performance,with R^(2) values of 0.89 at 0 min and 0.75 at 60 min.Shapley Additive exPlanations(SHAP)analysis revealed that while wind speed is the primary driver for short-term predictions,air temperature and nacelle position become more influential at longer forecasting horizons.These findings underscore the reliability of short-term predictions and the potential benefits of integrating hybrid AI and probabilistic models for extended forecasts.Our work contributes a robust and explainable framework to support Sri Lanka’s renewable energy transition,and future research will focus on real-time deployment and uncertainty quantification.展开更多
The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic l...The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic loading is addressed. Then sensitivity analysis on the factors of temperature and traffic loading is conducted and a short-term rutting prediction model is developed. The results show that under the same conditions of temperature and the number of load repetitions, rut increases sharply with the contact pressure in a linear manner, while as for the heavy load situation, the increases likely to be more nonlinear and faster; the significant factors affecting rutting include daily maximum air temperature, daily solar radiation volume, daily minimum air temperature, tire-pavement contact pressure and the number of load repetitions. Finally, a short-term rutting prediction model reflecting the effects of air temperature and traffic loading is developed, and it can be used for prediction and pre-waming for pavement rut prevention.展开更多
[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanx...[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanxi Province in late July 2010 as an example, data of five Doppler weather radars in Shaanxi Province were employed for a detailed analysis of the evolution of the heavy rainstorm pro- cess. [Result] Besides the good large-scale weather background conditions, the de- velopment and evolution of some mesoscale and small-scale weather systems direct- ly led to short-term heavy precipitations during the heavy rainstorm process, involv- ing the intrusion of moderate IS-scale weak cold air and presence of small-scale wind shear, convergence and adverse wind area. In addition, small-scale convection echoes were arranged in lines and formed a "train effect", which would also con- tribute to the generation of short-term heavy precipitation. [Conclusion] This study provided basic information for more clear and in-depth analysis of the formation mechanism of short-term heavy precipitations.展开更多
AIM:To evaluate the effect of gastrectomy on diabetes control in patients with type 2 diabetes mellitus and early gastric cancer.METHODS:Data from 64 patients with early gastric cancer and type 2 diabetes mellitus wer...AIM:To evaluate the effect of gastrectomy on diabetes control in patients with type 2 diabetes mellitus and early gastric cancer.METHODS:Data from 64 patients with early gastric cancer and type 2 diabetes mellitus were prospectively collected.All patients underwent curative gastrectomy(36 subtotal gastrectomy with gastroduodenostomy,16subtotal gastrectomy with gastrojejunostomy,12 total gastrectomy)and their physical and laboratory data were evaluated before and 3,6 and 12 mo after surgery.RESULTS:Fasting blood glucose(FBS),HbA1c,insulin,C-peptide,and homeostasis model assessment-estimated insulin resistance were significantly improved 3mo after surgery,regardless of operation type,and the significant improvement in all measured values,except HbA1c,was sustained up to 12 mo postoperatively.Approximately 3.1%of patients stopped diabetes medication and had HbA1c<6.0%and FBS<126 mg/dL.54.7%of patients decreased their medication,and had reduced FBS or HbA1c.In multivariate analysis,good diabetic control was not associated with operation type,but was associated with diabetes duration.CONCLUSION:Diabetes improved in more than 50%of patients during the first year after gastric cancer surgery.The degree of diabetes control was related to diabetes duration.展开更多
An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
AIM To review evidence on the short-term clinical outcomes of laparoscopic(LRR) vs open rectal resection(ORR) for rectal cancer.METHODS A systematic literature search was performed using Cochrane Central Register, MED...AIM To review evidence on the short-term clinical outcomes of laparoscopic(LRR) vs open rectal resection(ORR) for rectal cancer.METHODS A systematic literature search was performed using Cochrane Central Register, MEDLINE, EMBASE, Scopus, Open Grey and Clinical Trials.gov register for randomized clinical trials(RCTs) comparing LRR vs ORR for rectal cancer and reporting short-term clinical outcomes. Articles published in English from January 1, 1995 to June, 30 2016 that met the selection criteria were retrieved and reviewed. The Preferred Reporting Items for Systematic reviews and Meta-Analysis(PRISMA) statements checklist for reporting a systematic review was followed. Random-effect models were used to estimate mean differences and risk ratios. The robustness and heterogeneity of the results were explored by performing sensitivity analyses. The pooledeffect was considered significant when P < 0.05.RESULTS Overall, 14 RCTs were included. No differences were found in postoperative mortality(P = 0.19) and morbidity(P = 0.75) rates. The mean operative time was 36.67 min longer(95%CI: 27.22-46.11, P < 0.00001), the mean estimated blood loss was 88.80 ml lower(95%CI:-117.25 to-60.34, P < 0.00001), and the mean incision length was 11.17 cm smaller(95%CI:-13.88 to-8.47, P < 0.00001) for LRR than ORR. These results were confirmed by sensitivity analyses that focused on the four major RCTs. The mean length of hospital stay was 1.71 d shorter(95%CI:-2.84 to-0.58, P < 0.003) for LRR than ORR. Similarly, bowel recovery(i.e., day of the first bowel movement) was 0.68 d shorter(95%CI:-1.00 to-0.36, P < 0.00001) for LRR. The sensitivity analysis did not confirm a significant difference between LRR and ORR for these latter two parameters. The overall quality of the evidence was rated as high. CONCLUSION LRR is associated with lesser blood loss, smaller incision length, and longer operative times compared to ORR. No differences are observed for postoperative morbidity and mortality.展开更多
Cloud radiative kernels were built by BCC_RAD(Beijing Climate Center radiative transfer model)radiative transfer code.Then,short-term cloud feedback and its mechanisms in East Asia(0.5°S−60.5°N,69.5°−15...Cloud radiative kernels were built by BCC_RAD(Beijing Climate Center radiative transfer model)radiative transfer code.Then,short-term cloud feedback and its mechanisms in East Asia(0.5°S−60.5°N,69.5°−150.5°E)were analyzed quantitatively using the kernels combined with MODIS satellite data from July 2002 to June 2018.According to the surface and monsoon types,four subregions in East Asia-the Tibetan Plateau,northwest,temperate monsoon(TM),and subtropical monsoon(SM)—were selected.The average longwave,shortwave,and net cloud feedbacks in East Asia are−0.68±1.20,1.34±1.08,and 0.66±0.40 W m^−2 K^−1(±2σ),respectively,among which the net feedback is dominated by the positive shortwave feedback.Positive feedback in SM is the strongest of all subregions,mainly due to the contributions of nimbostratus and stratus.In East Asia,short-term feedback in spring is primarily caused by marine stratus in SM,in summer is primarily driven by deep convective cloud in TM,in autumn is mainly caused by land nimbostratus in SM,and in winter is mainly driven by land stratus in SM.Cloud feedback in East Asia is chiefly driven by decreases in mid-level and low cloud fraction owing to the changes in relative humidity,and a decrease in low cloud optical thickness due to the changes in cloud water content.展开更多
High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of ...High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.展开更多
The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the ...The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari...As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo...Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.展开更多
The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone ver...The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone vertical growth trajectories by detecting the stable isotope signatures(2H and 18O compositions)of different shells in 27 hailstones from 9hailstorms,which allowed us to capture the ambient temperature during hailstone growth.The vertical growth trajectories were obtained by comparing the isotopic compositions of water condensate in clouds,derived from the Adiabatic Model,with those measured in hailstones.Although hailstone growth was primarily observed in the–10°C to–30°C temperature layer,the embryo formation height and subsequent growth trajectories significantly varied among hailstones.Embryos formed over a wide range of temperatures(–8.7°C to–33.4°C);four originated at temperatures above–15°C and 16originated at temperatures below–20°C,suggesting ice nuclei composed of bioproteins and mineral dust,respectively.Among the 27 measured hailstones,3 exhibited minimal vertical movement,16 exhibited a monotonic rise or fall,and the remaining 8 exhibited alternating up-down trajectories;only one experienced“recycling”during up-down drifting.Trajectory analysis revealed that similar-sized hailstones from a single storm tended to form at similar heights,whereas those larger than 25 mm in diameter exhibited at least one period of upward growth.Vertical trajectories derived from isotopic analysis were corroborated by radar hydrometeor observations.展开更多
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi...Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.展开更多
The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki...The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology.展开更多
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金the State Grid Shanxi Electric Power Company Science and Technology Project“Smart distribution network with a high proportion of distributed wind storage adaptability assessment and improvement strategy research”(520530230024).
文摘With the increasing penetration of renewable energy in power systems,grid structures and operational paradigms are undergoing profound transformations.When subjected to disturbances,the interaction between power electronic devices and dynamic loads introduces strongly nonlinear dynamic characteristics in grid voltage responses,posing significant threats to system security and stability.To achieve reliable short-term voltage stability assessment under large-scale renewable integration,this paper innovatively proposes a response-driven online assessment method based on energy function theory.First,energy modeling of system components is performed based on energy function theory,followed by analysis of energy interaction mechanisms during voltage instability.To address the challenge of traditional energy functions in online applications,a convolutional neural network-long short-term memory(CNNLSTM)hybrid artificial Intelligence approach is introduced.By quantifying the contribution of each energy component to voltage stability,key energy terms are identified.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the voltage unstable equilibrium point(UEP)obtained from offline simulations is used as both the energy threshold and the output of the artificial intelligence model,enabling the construction of an artificial intelligence model for energy threshold prediction.The measurable electrical quantities corresponding to these key energies serve as inputs,while the energy at the unstable equilibrium point(UEP)obtained from offline simulations acts as the output,enabling the construction of an artificial intelligence model for energy threshold prediction.Real-time response data are fed into the model to predict the system's instantaneous energy threshold,which is then compared with the transient energy at fault clearance to evaluate stability.Validation on both a 3-machine,10-bus system and the New England 10-machine,39-bus system confirms the method's adaptability and accuracy.The simulation results demonstrate that the proposed short-term voltage stability assessment model outperforms other methods in both accuracy and computational efficiency.
文摘In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle position,and actual power,lagged features were generated to capture temporal dependencies.Among 24 evaluated models,the ensemble bagging approach achieved the best performance,with R^(2) values of 0.89 at 0 min and 0.75 at 60 min.Shapley Additive exPlanations(SHAP)analysis revealed that while wind speed is the primary driver for short-term predictions,air temperature and nacelle position become more influential at longer forecasting horizons.These findings underscore the reliability of short-term predictions and the potential benefits of integrating hybrid AI and probabilistic models for extended forecasts.Our work contributes a robust and explainable framework to support Sri Lanka’s renewable energy transition,and future research will focus on real-time deployment and uncertainty quantification.
基金The National High Technology Research and Development Program of China (863 Program)(No.2006AA11Z110)
文摘The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic loading is addressed. Then sensitivity analysis on the factors of temperature and traffic loading is conducted and a short-term rutting prediction model is developed. The results show that under the same conditions of temperature and the number of load repetitions, rut increases sharply with the contact pressure in a linear manner, while as for the heavy load situation, the increases likely to be more nonlinear and faster; the significant factors affecting rutting include daily maximum air temperature, daily solar radiation volume, daily minimum air temperature, tire-pavement contact pressure and the number of load repetitions. Finally, a short-term rutting prediction model reflecting the effects of air temperature and traffic loading is developed, and it can be used for prediction and pre-waming for pavement rut prevention.
基金Supported by Special Fund for National Weather Service Forecaster of China (CMAYBY2011-050)~~
文摘[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanxi Province in late July 2010 as an example, data of five Doppler weather radars in Shaanxi Province were employed for a detailed analysis of the evolution of the heavy rainstorm pro- cess. [Result] Besides the good large-scale weather background conditions, the de- velopment and evolution of some mesoscale and small-scale weather systems direct- ly led to short-term heavy precipitations during the heavy rainstorm process, involv- ing the intrusion of moderate IS-scale weak cold air and presence of small-scale wind shear, convergence and adverse wind area. In addition, small-scale convection echoes were arranged in lines and formed a "train effect", which would also con- tribute to the generation of short-term heavy precipitation. [Conclusion] This study provided basic information for more clear and in-depth analysis of the formation mechanism of short-term heavy precipitations.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,2011-0011301a faculty research grant of Yonsei University College of Medicine for 2011,6-2011-0084
文摘AIM:To evaluate the effect of gastrectomy on diabetes control in patients with type 2 diabetes mellitus and early gastric cancer.METHODS:Data from 64 patients with early gastric cancer and type 2 diabetes mellitus were prospectively collected.All patients underwent curative gastrectomy(36 subtotal gastrectomy with gastroduodenostomy,16subtotal gastrectomy with gastrojejunostomy,12 total gastrectomy)and their physical and laboratory data were evaluated before and 3,6 and 12 mo after surgery.RESULTS:Fasting blood glucose(FBS),HbA1c,insulin,C-peptide,and homeostasis model assessment-estimated insulin resistance were significantly improved 3mo after surgery,regardless of operation type,and the significant improvement in all measured values,except HbA1c,was sustained up to 12 mo postoperatively.Approximately 3.1%of patients stopped diabetes medication and had HbA1c<6.0%and FBS<126 mg/dL.54.7%of patients decreased their medication,and had reduced FBS or HbA1c.In multivariate analysis,good diabetic control was not associated with operation type,but was associated with diabetes duration.CONCLUSION:Diabetes improved in more than 50%of patients during the first year after gastric cancer surgery.The degree of diabetes control was related to diabetes duration.
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
文摘AIM To review evidence on the short-term clinical outcomes of laparoscopic(LRR) vs open rectal resection(ORR) for rectal cancer.METHODS A systematic literature search was performed using Cochrane Central Register, MEDLINE, EMBASE, Scopus, Open Grey and Clinical Trials.gov register for randomized clinical trials(RCTs) comparing LRR vs ORR for rectal cancer and reporting short-term clinical outcomes. Articles published in English from January 1, 1995 to June, 30 2016 that met the selection criteria were retrieved and reviewed. The Preferred Reporting Items for Systematic reviews and Meta-Analysis(PRISMA) statements checklist for reporting a systematic review was followed. Random-effect models were used to estimate mean differences and risk ratios. The robustness and heterogeneity of the results were explored by performing sensitivity analyses. The pooledeffect was considered significant when P < 0.05.RESULTS Overall, 14 RCTs were included. No differences were found in postoperative mortality(P = 0.19) and morbidity(P = 0.75) rates. The mean operative time was 36.67 min longer(95%CI: 27.22-46.11, P < 0.00001), the mean estimated blood loss was 88.80 ml lower(95%CI:-117.25 to-60.34, P < 0.00001), and the mean incision length was 11.17 cm smaller(95%CI:-13.88 to-8.47, P < 0.00001) for LRR than ORR. These results were confirmed by sensitivity analyses that focused on the four major RCTs. The mean length of hospital stay was 1.71 d shorter(95%CI:-2.84 to-0.58, P < 0.003) for LRR than ORR. Similarly, bowel recovery(i.e., day of the first bowel movement) was 0.68 d shorter(95%CI:-1.00 to-0.36, P < 0.00001) for LRR. The sensitivity analysis did not confirm a significant difference between LRR and ORR for these latter two parameters. The overall quality of the evidence was rated as high. CONCLUSION LRR is associated with lesser blood loss, smaller incision length, and longer operative times compared to ORR. No differences are observed for postoperative morbidity and mortality.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0603502)the National Natural Science Foundation of China(Grant Nos.91644211 and 41575002).
文摘Cloud radiative kernels were built by BCC_RAD(Beijing Climate Center radiative transfer model)radiative transfer code.Then,short-term cloud feedback and its mechanisms in East Asia(0.5°S−60.5°N,69.5°−150.5°E)were analyzed quantitatively using the kernels combined with MODIS satellite data from July 2002 to June 2018.According to the surface and monsoon types,four subregions in East Asia-the Tibetan Plateau,northwest,temperate monsoon(TM),and subtropical monsoon(SM)—were selected.The average longwave,shortwave,and net cloud feedbacks in East Asia are−0.68±1.20,1.34±1.08,and 0.66±0.40 W m^−2 K^−1(±2σ),respectively,among which the net feedback is dominated by the positive shortwave feedback.Positive feedback in SM is the strongest of all subregions,mainly due to the contributions of nimbostratus and stratus.In East Asia,short-term feedback in spring is primarily caused by marine stratus in SM,in summer is primarily driven by deep convective cloud in TM,in autumn is mainly caused by land nimbostratus in SM,and in winter is mainly driven by land stratus in SM.Cloud feedback in East Asia is chiefly driven by decreases in mid-level and low cloud fraction owing to the changes in relative humidity,and a decrease in low cloud optical thickness due to the changes in cloud water content.
文摘High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31960585)Science and Technology Major Project of Guangxi(Grant No.Guike AA22068092)+1 种基金Guangxi Science and Technology Vanguard Special Action Project(Grant No.202204)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(Grant Nos.SKLCUSA-a201906,SKLCU-SA-c201901)。
文摘The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the Ministry of Science and Technology(MOST)Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Science and Technology Project of Henan Province(No.222102210081).
文摘Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.
基金supported by the National Natural Science Foundation of China(Grant No.42030607)the Beijing Municipal Science and Technology Commission(Grant No.Z251100004525005)the National Science Foundation/National Center for Atmospheric Research,and NASA(Grant No.80NSSC22M0129)。
文摘The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone vertical growth trajectories by detecting the stable isotope signatures(2H and 18O compositions)of different shells in 27 hailstones from 9hailstorms,which allowed us to capture the ambient temperature during hailstone growth.The vertical growth trajectories were obtained by comparing the isotopic compositions of water condensate in clouds,derived from the Adiabatic Model,with those measured in hailstones.Although hailstone growth was primarily observed in the–10°C to–30°C temperature layer,the embryo formation height and subsequent growth trajectories significantly varied among hailstones.Embryos formed over a wide range of temperatures(–8.7°C to–33.4°C);four originated at temperatures above–15°C and 16originated at temperatures below–20°C,suggesting ice nuclei composed of bioproteins and mineral dust,respectively.Among the 27 measured hailstones,3 exhibited minimal vertical movement,16 exhibited a monotonic rise or fall,and the remaining 8 exhibited alternating up-down trajectories;only one experienced“recycling”during up-down drifting.Trajectory analysis revealed that similar-sized hailstones from a single storm tended to form at similar heights,whereas those larger than 25 mm in diameter exhibited at least one period of upward growth.Vertical trajectories derived from isotopic analysis were corroborated by radar hydrometeor observations.
基金funded by Science Foundation for Youth supported by Shanghai Municipal Health Commission(No.20204Y0313)Sailing Program with the support of Science and Technology Commission of Shanghai Municipality(No.21YF1443800).
文摘Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.
基金supported by Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS-2023-Z13)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)+1 种基金A portion of the work was performed at US National High Magnetic Field Laboratory,which is supported by the National Science Foundation(Cooperative Agreement No.DMR-1157490 and DMR-1644779)the State of Florida.Thanks also to Mary Tyler for editing.
文摘The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology.
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.