The synchrotron radiation beamline BL17B of the National Facility for Protein Science(NFPS)in Shanghai,situated at the Shanghai Synchrotron Radiation Facility(SSRF),was originally designed for diffraction experiments ...The synchrotron radiation beamline BL17B of the National Facility for Protein Science(NFPS)in Shanghai,situated at the Shanghai Synchrotron Radiation Facility(SSRF),was originally designed for diffraction experiments and accommodates techniques including single-crystal diffraction,powder diffraction,and grazing-incidence wide-angle X-ray scattering(GIWAXS)to enable the characterization of long-range ordered atomic structures.The academic community associated with BL17B engages in research domains encompassing biology,environment,energy,and materials,and a pronounced demand for characterizing short-range ordered structures exists.To address these requirements,BL17B established an advanced X-ray absorption fine structure(XAFS)experimental platform that enabled it to address a wide range of systems,from crystalline to amorphous and from long-range order to short-range order.The XAFS platform allows simultaneous XAFS data acquisition for both the transmission and fluorescence modes within an energy range of 5-23 keV,encompassing the K-edges of titanium to ruthenium and the L3-edges of cesium to bismuth.The platform exemplifies high levels of automation achieved through automated sample assessment and data collection based on large-capacity sample wheels that facilitate remote sample loading.When integrated with a highly integrated control system that simplifies experimental preparation and data collection,the XAFS platform significantly bolsters experimental efficiency and enhances user experience.Notably,the platform boasts an impressively low extended X-ray absorption fine structure(EXAFS)detection limit of 0.04 wt%for dilute copper phthalocyanine(CuPc)samples and an even more remarkable X-ray absorption near edge structure(XANES)detection threshold of 0.01 wt%.These results demonstrate the methodology?s reliability in low-concentration sample analysis,confirming its capability to generate high-quality XAFS data.展开更多
This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Da...This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.展开更多
Chemical short-range order(SRO),a phenomenon at the atomic scale resulting from inhomogeneities in the local chemical environment,is usually studied using machine learning force field-based molecular dynamics simulati...Chemical short-range order(SRO),a phenomenon at the atomic scale resulting from inhomogeneities in the local chemical environment,is usually studied using machine learning force field-based molecular dynamics simulations due to the limitations of experimental methods.To promote the reliable application of machine potentials in high-entropy alloy simulations,first,this work uses NEP models trained on two different datasets to predict the SRO coefficients of NbMoTaW.The results show that within the same machine learning framework,there are significant differences in the prediction of SRO coefficients for the Nb-Nb atomic pair.Subsequently,this work predicts the SRO coefficients of NbMoTaW using the NEP model and the SNAP model,both of which are trained on the same dataset.The results reveal significant discrepancies in SRO predictions for like-element pairs(e.g.,Nb-Nb and W-W)between the two potentials,despite the identical training data.The findings of this study indicate that discrepancies in the prediction results of SRO coefficients can arise from either the same machine learning framework trained on different datasets or different learning frameworks trained on the same dataset.This reflects possible incompleteness in the current training set's coverage of local chemical environments at the atomic scale.Future research should establish unified evaluation standards to assess the capability of training sets to accurately describe complex atomic-scale behaviors such as SRO.展开更多
Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.How...Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research.展开更多
Chemical short-range order(SRO)in multi-principal element alloys(MPEAs)and its unprecedented benefits on materials performance have been elucidated in recent experimental observations.Hence,manipulating the fine struc...Chemical short-range order(SRO)in multi-principal element alloys(MPEAs)and its unprecedented benefits on materials performance have been elucidated in recent experimental observations.Hence,manipulating the fine structure of SRO and its interaction with other coexisting SROs or defects becomes increasingly crucial for MPEAs design.Here,using TiZrNb,TiZrVNb,and TiZrV as the model systems,SRO and its interaction with surrounding environment,as well as its effects on mechanical properties are comprehensively explored through density functional theory-based Monte Carlo simulations.We find that both TiZrNb and TiZrVNb exhibit Ti-Zr SRO and Nb-Nb short-range clustering(SRC),whereas in TiZrV,Zr-V SRO occurs in addition to Ti-Zr SRO.SRO largely increases the modulus and the unstable stacking fault energy(USFE).At the electronic scale,SRO is found accompanied with a deeper pseudo-energy gap at Fermi level,and with a covalent bonding character between the metallic atoms.Due to the SRO-oxygen attraction,oxygen centered and Ti/Zr enriched octahedron coined as(O,2Ti,4Zr)-octahedron populates in TiZrNb-O and TiZrV-O.In TiZrVNb-O,there mainly exist two types of octahedral:(O,2Ti,4Zr)and(O,3Ti,3Zr).Quantitatively,forming these(O,Ti,Zr)-octahedra,the modulus and USFE of MPEAs are further increased compared to the individual contribution from SRO or oxygen,but the improvement does not surpass the sum of the increments induced by the two individuals.The present findings deepen the understanding of SROs and their interactions with surrounding environments,pushing forward the effective utilization of SRO in materials design.展开更多
The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs...The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs still needs to be further revealed.Here,the effect of element distribution,Al content,crack orientation,temperature,and strain rate on the crack propagation behavior of the AlxFeCoCrNi HEAs are investigated using Monte Carlo(MC)/molecular dynamics(MD)simulation methods.Two HEA models are considered,one with five elements randomly distributed in the alloys,i.e.RSS_HEAs,and the other presenting SRO structure in the alloys,namely SRO_HEAs.The results show that Al atoms play a decisive role in the SRO degree of the HEA.The higher the Al content,the greater the SRO degree of the HEA,and the stronger the resistance of the SRO structure to crack propagation in the alloys.The results indicate that the reinforcement effect of the SRO structure in the model with the(111)[110]crack is more significant than that with the(111)[110]crack.The results show that the crack length of the alloys at maximum strain does not monotonically increase with temperature,but rather exhibits a turning point at the temperature of 400 K.When the temperature is below 400 K,the crack length of the alloys increases with the increase of temperature,while above 400 K,the opposite trend appears.In addition,the results indicate that the crack length of the alloys decreases with increasing strain rate under the same strain.展开更多
A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of r...A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.展开更多
In this letter,we briefly summarize experimental and theoretical findings of fo rmation and characterization of short-range orderings(SROs)as well as their effects on the defo rmation behavior of high-entropy alloys(H...In this letter,we briefly summarize experimental and theoretical findings of fo rmation and characterization of short-range orderings(SROs)as well as their effects on the defo rmation behavior of high-entropy alloys(HEAs).We show that existence of SROs is a common yet key structural feature of HEAs,and tuning the degree of SROs is an effective way for optimizing mechanical properties of HEAs.In additional,the challenges concerning about formation mechanism and characterization of SROs in HEAs are discussed,and future research activities in this regard are also proposed.展开更多
An improved echo extrapolation technology( MOD-COTREC) was introduced firstly,and then two plans for lightning nowcasting based on MOD-COTREC and both isothermal radar reflectivity and MOD-COTREC were proposed based o...An improved echo extrapolation technology( MOD-COTREC) was introduced firstly,and then two plans for lightning nowcasting based on MOD-COTREC and both isothermal radar reflectivity and MOD-COTREC were proposed based on the technology. Afterwards,the two plans for lightning nowcasting were tested by a case respectively. It is concluded that during the process of lightning nowcasting singly based on MOD-COTREC,the appearance and disappearance of lightning are not considered,and only lightning position is predicted when lightning density is constant,so the prediction error is big. The plan for lightning nowcasting based on both isothermal radar reflectivity and MOD-COTREC is still at an experimental stage,and the nowcasting products of cloud-to-ground lightning based on the plan are very different from the actual density and position of cloud-to-ground lightning,so it needs to be improved further.展开更多
A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources obser...A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources observed from the Beijing Lightning Network(BLNET)were used to obtain information about the thunderstorm cells,which are significantly valuable in real-time.The boundaries of thunderstorm cells were obtained through the neighborhood technique.After smoothing,these boundaries were used to track the movement of thunderstorms and then extrapolated to nowcast the lightning approaching in an area of concern.The algorithm can deliver creditable results prior to a thunderstorm arriving at the area of concern,with accuracies of 63%,80%,and 91%for lead times of 30,15,and 5 minutes,respectively.The real-time observations of total lightning appear to be significant for thunderstorm tracking and lightning nowcasting,as total lightning tracking could help to fill the observational gaps in radar reflectivity due to the attenuation by hills or other obstacles.The lightning data used in the algorithm performs well in tracking the active thunderstorm cells associated with lightning activities.展开更多
Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nea...Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.展开更多
It was difficult to probe the clear air echo by the general traditional radar for echo's weak intensity.Therefore,its investigation was less because of the restrictions of probe technique and data.In recent years,...It was difficult to probe the clear air echo by the general traditional radar for echo's weak intensity.Therefore,its investigation was less because of the restrictions of probe technique and data.In recent years,with the probe tools improving,more clear air echoes were probed,and the relative investigations were more and more.However,most investigations stayed in the theory at present,and the relative literatures about its application in the practical forecast work were few.For a new generation of Doppler radars' powers and sensitivities were all high,they were put into service successively in China.People could observe more and more the clear air atmospheric echoes in the daily business.Its Doppler radar velocity provided the important basis for daily short-term predication and had very important indication meaning for the nowcasting of seasons which were spring,summer and fall.It was important to forecast the precipitation,especially the abrupt rainstorm by using the symptom of clear air echo which was probed by the new generation of Doppler radar products.Therefore,the advances on clear air echo research at home and abroad were summarized simply.展开更多
Ensemble forecasting systems have become an important tool for estimating the uncertainties in initial conditions and model formulations and they are receiving increased attention from various applications.The Regiona...Ensemble forecasting systems have become an important tool for estimating the uncertainties in initial conditions and model formulations and they are receiving increased attention from various applications.The Regional Ensemble Prediction System(REPS),which has operated at the Beijing Meteorological Service(BMS)since 2017,allows for probabilistic forecasts.However,it still suffers from systematic deficiencies during the first couple of forecast hours.This paper presents an integrated probabilistic nowcasting ensemble prediction system(NEPS)that is constructed by applying a mixed dynamicintegrated method.It essentially combines the uncertainty information(i.e.,ensemble variance)provided by the REPS with the nowcasting method provided by the rapid-refresh deterministic nowcasting prediction system(NPS)that has operated at the Beijing Meteorological Service(BMS)since 2019.The NEPS provides hourly updated analyses and probabilistic forecasts in the nowcasting and short range(0-6 h)with a spatial grid spacing of 500 m.It covers the three meteorological parameters:temperature,wind,and precipitation.The outcome of an evaluation experiment over the deterministic and probabilistic forecasts indicates that the NEPS outperforms the REPS and NPS in terms of surface weather variables.Analysis of two cases demonstrates the superior reliability of the NEPS and suggests that the NEPS gives more details about the spatial intensity and distribution of the meteorological parameters.展开更多
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila...A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.展开更多
Precipitation nowcasting is of great significance for severe convective weather warnings.Radar echo extrapolation is a commonly used precipitation nowcasting method.However,the traditional radar echo extrapolation met...Precipitation nowcasting is of great significance for severe convective weather warnings.Radar echo extrapolation is a commonly used precipitation nowcasting method.However,the traditional radar echo extrapolation methods are encountered with the dilemma of low prediction accuracy and extrapolation ambiguity.The reason is that those methods cannot retain important long-term information and fail to capture short-term motion information from the long-range data stream.In order to solve the above problems,we select the spatiotemporal long short-term memory(ST-LSTM)as the recurrent unit of the model and integrate the 3D convolution operation in it to strengthen the model’s ability to capture short-term motion information which plays a vital role in the prediction of radar echo motion trends.For the purpose of enhancing the model’s ability to retain long-term important information,we also introduce the channel attention mechanism to achieve this goal.In the experiment,the training and testing datasets are constructed using radar data of Shanghai,we compare our model with three benchmark models under the reflectance thresholds of 15 and 25.Experimental results demonstrate that the proposed model outperforms the three benchmark models in radar echo extrapolation task,which obtains a higher accuracy rate and improves the clarity of the extrapolated image.展开更多
Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretic...Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretical and practical compared with repulsive systems. By studying the statistics of rigid clusters, we find that the critical packing fraction φ_(c) varies linearly with attraction μ for different system sizes when the range of attraction is short. While for systems with long-range attractions, however, the slope of φ_(c) appears significantly different, which means that there are two distinct jamming scenarios. In this paper, we focus our main attention on short-range attractions scenario and define a new quantity named "short-range attraction susceptibility" χ_(p), which describes the degree of response of the probability of finding jammed states pjto short-range attraction strength μ. Our central results are that χ_(p) diverges in the thermodynamic limit as χ_(p) ∝|φ-φ_(c)^(∞)|^(-γ_(p)), where φ_(c)^(∞) is the packing fraction at the jamming transition for the infinite system in the absence of attraction. χ_(p) obeys scaling collapse with a scaling function in both two and three dimensions, illuminating that the jamming transition can be considered as a phase transition as proposed in previous work.展开更多
基金supported by the Chinese Academy of Science(CAS)Key Technology Talent Program(No.2021000022)。
文摘The synchrotron radiation beamline BL17B of the National Facility for Protein Science(NFPS)in Shanghai,situated at the Shanghai Synchrotron Radiation Facility(SSRF),was originally designed for diffraction experiments and accommodates techniques including single-crystal diffraction,powder diffraction,and grazing-incidence wide-angle X-ray scattering(GIWAXS)to enable the characterization of long-range ordered atomic structures.The academic community associated with BL17B engages in research domains encompassing biology,environment,energy,and materials,and a pronounced demand for characterizing short-range ordered structures exists.To address these requirements,BL17B established an advanced X-ray absorption fine structure(XAFS)experimental platform that enabled it to address a wide range of systems,from crystalline to amorphous and from long-range order to short-range order.The XAFS platform allows simultaneous XAFS data acquisition for both the transmission and fluorescence modes within an energy range of 5-23 keV,encompassing the K-edges of titanium to ruthenium and the L3-edges of cesium to bismuth.The platform exemplifies high levels of automation achieved through automated sample assessment and data collection based on large-capacity sample wheels that facilitate remote sample loading.When integrated with a highly integrated control system that simplifies experimental preparation and data collection,the XAFS platform significantly bolsters experimental efficiency and enhances user experience.Notably,the platform boasts an impressively low extended X-ray absorption fine structure(EXAFS)detection limit of 0.04 wt%for dilute copper phthalocyanine(CuPc)samples and an even more remarkable X-ray absorption near edge structure(XANES)detection threshold of 0.01 wt%.These results demonstrate the methodology?s reliability in low-concentration sample analysis,confirming its capability to generate high-quality XAFS data.
基金Scientific Research and Development Project of Hebei Meteorological Bureau(23ky08).
文摘This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.
基金Project supported by the Hunan Provincial Natural Science Foundation(Grant Nos.2024JJ6190 and 2024JK2007-1)。
文摘Chemical short-range order(SRO),a phenomenon at the atomic scale resulting from inhomogeneities in the local chemical environment,is usually studied using machine learning force field-based molecular dynamics simulations due to the limitations of experimental methods.To promote the reliable application of machine potentials in high-entropy alloy simulations,first,this work uses NEP models trained on two different datasets to predict the SRO coefficients of NbMoTaW.The results show that within the same machine learning framework,there are significant differences in the prediction of SRO coefficients for the Nb-Nb atomic pair.Subsequently,this work predicts the SRO coefficients of NbMoTaW using the NEP model and the SNAP model,both of which are trained on the same dataset.The results reveal significant discrepancies in SRO predictions for like-element pairs(e.g.,Nb-Nb and W-W)between the two potentials,despite the identical training data.The findings of this study indicate that discrepancies in the prediction results of SRO coefficients can arise from either the same machine learning framework trained on different datasets or different learning frameworks trained on the same dataset.This reflects possible incompleteness in the current training set's coverage of local chemical environments at the atomic scale.Future research should establish unified evaluation standards to assess the capability of training sets to accurately describe complex atomic-scale behaviors such as SRO.
基金supported by the Foundation of Equipment Preresearch Area(Grant No.80919010303).
文摘Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research.
基金financially supported by the National Natural Science Foundation of China(No.52173216)CNPC Science and Technology Project"Research and Development of Corrosion Resistant Materials for Extreme Environments"(No.2023ZZ11-02).
文摘Chemical short-range order(SRO)in multi-principal element alloys(MPEAs)and its unprecedented benefits on materials performance have been elucidated in recent experimental observations.Hence,manipulating the fine structure of SRO and its interaction with other coexisting SROs or defects becomes increasingly crucial for MPEAs design.Here,using TiZrNb,TiZrVNb,and TiZrV as the model systems,SRO and its interaction with surrounding environment,as well as its effects on mechanical properties are comprehensively explored through density functional theory-based Monte Carlo simulations.We find that both TiZrNb and TiZrVNb exhibit Ti-Zr SRO and Nb-Nb short-range clustering(SRC),whereas in TiZrV,Zr-V SRO occurs in addition to Ti-Zr SRO.SRO largely increases the modulus and the unstable stacking fault energy(USFE).At the electronic scale,SRO is found accompanied with a deeper pseudo-energy gap at Fermi level,and with a covalent bonding character between the metallic atoms.Due to the SRO-oxygen attraction,oxygen centered and Ti/Zr enriched octahedron coined as(O,2Ti,4Zr)-octahedron populates in TiZrNb-O and TiZrV-O.In TiZrVNb-O,there mainly exist two types of octahedral:(O,2Ti,4Zr)and(O,3Ti,3Zr).Quantitatively,forming these(O,Ti,Zr)-octahedra,the modulus and USFE of MPEAs are further increased compared to the individual contribution from SRO or oxygen,but the improvement does not surpass the sum of the increments induced by the two individuals.The present findings deepen the understanding of SROs and their interactions with surrounding environments,pushing forward the effective utilization of SRO in materials design.
基金financially supported by the Natural Science Foundation of Shaanxi Province(No.2021JZ-53)the Program for Graduate Innovation Fund of Xi'an Shiyou University(No.YCS22213146).
文摘The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs still needs to be further revealed.Here,the effect of element distribution,Al content,crack orientation,temperature,and strain rate on the crack propagation behavior of the AlxFeCoCrNi HEAs are investigated using Monte Carlo(MC)/molecular dynamics(MD)simulation methods.Two HEA models are considered,one with five elements randomly distributed in the alloys,i.e.RSS_HEAs,and the other presenting SRO structure in the alloys,namely SRO_HEAs.The results show that Al atoms play a decisive role in the SRO degree of the HEA.The higher the Al content,the greater the SRO degree of the HEA,and the stronger the resistance of the SRO structure to crack propagation in the alloys.The results indicate that the reinforcement effect of the SRO structure in the model with the(111)[110]crack is more significant than that with the(111)[110]crack.The results show that the crack length of the alloys at maximum strain does not monotonically increase with temperature,but rather exhibits a turning point at the temperature of 400 K.When the temperature is below 400 K,the crack length of the alloys increases with the increase of temperature,while above 400 K,the opposite trend appears.In addition,the results indicate that the crack length of the alloys decreases with increasing strain rate under the same strain.
基金This study was supported by the Special Fund for Basic Research and Operation of Chinese Academy of Meteorological Science:Development on quantitative precipitation forecasts for 0-6 h lead times by blending radar-based extrapolation and GRAPES-meso,Observation and retrieval methods of micro-physics,the National Natural Science Foundation of China
文摘A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales. Movement of radar echoes, particularly associated with convective storms, exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms. For the null echo region, the usual correlation technique produces zero or a very small magnitude of motion vectors. To mitigate these constraints, MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind, and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors. Eventually, the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion. Performance of the MTREC technique was compared with TREC technique using case studies: the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar. The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique, which leads to improvements in tracking the entire radar reflectivity pattern. The new multi-scMe tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting. The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.
基金supported by the National Natural Science Foundation of China(Nos.51921001,51871016,51971017,51531001,51901013,and 51671021)111 Project(B07003)+3 种基金Program for Changjiang Scholars and Innovative Research Team in University of China(IRT-14R05)the Projects of SKLAMM-USTBthe financial support from the Fundamental Research Fund for the Central Universities(No.FRF-BD-19002B)National Key Basic Research Program,China(No.2016YFB0300502)。
文摘In this letter,we briefly summarize experimental and theoretical findings of fo rmation and characterization of short-range orderings(SROs)as well as their effects on the defo rmation behavior of high-entropy alloys(HEAs).We show that existence of SROs is a common yet key structural feature of HEAs,and tuning the degree of SROs is an effective way for optimizing mechanical properties of HEAs.In additional,the challenges concerning about formation mechanism and characterization of SROs in HEAs are discussed,and future research activities in this regard are also proposed.
文摘An improved echo extrapolation technology( MOD-COTREC) was introduced firstly,and then two plans for lightning nowcasting based on MOD-COTREC and both isothermal radar reflectivity and MOD-COTREC were proposed based on the technology. Afterwards,the two plans for lightning nowcasting were tested by a case respectively. It is concluded that during the process of lightning nowcasting singly based on MOD-COTREC,the appearance and disappearance of lightning are not considered,and only lightning position is predicted when lightning density is constant,so the prediction error is big. The plan for lightning nowcasting based on both isothermal radar reflectivity and MOD-COTREC is still at an experimental stage,and the nowcasting products of cloud-to-ground lightning based on the plan are very different from the actual density and position of cloud-to-ground lightning,so it needs to be improved further.
基金The National Natural Science Foundation of China(Grant Nos.41630425,41761144074 and 41875007)supported the researchthe Chinese Academy of Sciences for the CAS-PIFI fellowship grant。
文摘A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources observed from the Beijing Lightning Network(BLNET)were used to obtain information about the thunderstorm cells,which are significantly valuable in real-time.The boundaries of thunderstorm cells were obtained through the neighborhood technique.After smoothing,these boundaries were used to track the movement of thunderstorms and then extrapolated to nowcast the lightning approaching in an area of concern.The algorithm can deliver creditable results prior to a thunderstorm arriving at the area of concern,with accuracies of 63%,80%,and 91%for lead times of 30,15,and 5 minutes,respectively.The real-time observations of total lightning appear to be significant for thunderstorm tracking and lightning nowcasting,as total lightning tracking could help to fill the observational gaps in radar reflectivity due to the attenuation by hills or other obstacles.The lightning data used in the algorithm performs well in tracking the active thunderstorm cells associated with lightning activities.
基金supported by the Commonweal Program of Chinese Ministry of Water Resources( No.200901062)the National Natural Science Foundation of China ( No.50979033)the Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering ( No. 2009585812 and No. 2008491011)
文摘Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.
文摘It was difficult to probe the clear air echo by the general traditional radar for echo's weak intensity.Therefore,its investigation was less because of the restrictions of probe technique and data.In recent years,with the probe tools improving,more clear air echoes were probed,and the relative investigations were more and more.However,most investigations stayed in the theory at present,and the relative literatures about its application in the practical forecast work were few.For a new generation of Doppler radars' powers and sensitivities were all high,they were put into service successively in China.People could observe more and more the clear air atmospheric echoes in the daily business.Its Doppler radar velocity provided the important basis for daily short-term predication and had very important indication meaning for the nowcasting of seasons which were spring,summer and fall.It was important to forecast the precipitation,especially the abrupt rainstorm by using the symptom of clear air echo which was probed by the new generation of Doppler radar products.Therefore,the advances on clear air echo research at home and abroad were summarized simply.
基金supported by National Key Research and Development Program of China(Grant No.2018YFC1506804)the Beijing Natural Science Foundation(Grant No.8222051)the Key Innovation Team of China Meteorological Administration(CMA2022ZD04)。
文摘Ensemble forecasting systems have become an important tool for estimating the uncertainties in initial conditions and model formulations and they are receiving increased attention from various applications.The Regional Ensemble Prediction System(REPS),which has operated at the Beijing Meteorological Service(BMS)since 2017,allows for probabilistic forecasts.However,it still suffers from systematic deficiencies during the first couple of forecast hours.This paper presents an integrated probabilistic nowcasting ensemble prediction system(NEPS)that is constructed by applying a mixed dynamicintegrated method.It essentially combines the uncertainty information(i.e.,ensemble variance)provided by the REPS with the nowcasting method provided by the rapid-refresh deterministic nowcasting prediction system(NPS)that has operated at the Beijing Meteorological Service(BMS)since 2019.The NEPS provides hourly updated analyses and probabilistic forecasts in the nowcasting and short range(0-6 h)with a spatial grid spacing of 500 m.It covers the three meteorological parameters:temperature,wind,and precipitation.The outcome of an evaluation experiment over the deterministic and probabilistic forecasts indicates that the NEPS outperforms the REPS and NPS in terms of surface weather variables.Analysis of two cases demonstrates the superior reliability of the NEPS and suggests that the NEPS gives more details about the spatial intensity and distribution of the meteorological parameters.
基金National Natural Science Foundation of China(41075040,41475102)"973"project for typhoon(2015CB452802)+1 种基金CMA Special Welfare Research Fund(GYHY201406009)Public Welfare(Meteorological Sector)Research Fund(GYHY201406003)
文摘A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
文摘Precipitation nowcasting is of great significance for severe convective weather warnings.Radar echo extrapolation is a commonly used precipitation nowcasting method.However,the traditional radar echo extrapolation methods are encountered with the dilemma of low prediction accuracy and extrapolation ambiguity.The reason is that those methods cannot retain important long-term information and fail to capture short-term motion information from the long-range data stream.In order to solve the above problems,we select the spatiotemporal long short-term memory(ST-LSTM)as the recurrent unit of the model and integrate the 3D convolution operation in it to strengthen the model’s ability to capture short-term motion information which plays a vital role in the prediction of radar echo motion trends.For the purpose of enhancing the model’s ability to retain long-term important information,we also introduce the channel attention mechanism to achieve this goal.In the experiment,the training and testing datasets are constructed using radar data of Shanghai,we compare our model with three benchmark models under the reflectance thresholds of 15 and 25.Experimental results demonstrate that the proposed model outperforms the three benchmark models in radar echo extrapolation task,which obtains a higher accuracy rate and improves the clarity of the extrapolated image.
基金supported by the National Natural Science Foundation of China (Grant No. 11702289)Key Core Technology and Generic Technology Research and Development Project of Shanxi Province,China (Grant No. 2020XXX013)the National Key Research and Development Project of China。
文摘Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretical and practical compared with repulsive systems. By studying the statistics of rigid clusters, we find that the critical packing fraction φ_(c) varies linearly with attraction μ for different system sizes when the range of attraction is short. While for systems with long-range attractions, however, the slope of φ_(c) appears significantly different, which means that there are two distinct jamming scenarios. In this paper, we focus our main attention on short-range attractions scenario and define a new quantity named "short-range attraction susceptibility" χ_(p), which describes the degree of response of the probability of finding jammed states pjto short-range attraction strength μ. Our central results are that χ_(p) diverges in the thermodynamic limit as χ_(p) ∝|φ-φ_(c)^(∞)|^(-γ_(p)), where φ_(c)^(∞) is the packing fraction at the jamming transition for the infinite system in the absence of attraction. χ_(p) obeys scaling collapse with a scaling function in both two and three dimensions, illuminating that the jamming transition can be considered as a phase transition as proposed in previous work.