期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
1
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
在线阅读 下载PDF
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
2
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
在线阅读 下载PDF
Prediction of Attention and Short-Term Memory Loss by EEG Workload Estimation
3
作者 Md. Ariful Islam Ajay Krishno Sarkar +2 位作者 Md. Imran Hossain Md. Tofail Ahmed A. H. M. Iftekharul Ferdous 《Journal of Biosciences and Medicines》 2023年第4期304-318,共15页
Mental workload plays a vital role in cognitive impairment. The impairment refers to a person’s difficulty in remembering, receiving new information, learning new things, concentrating, or making decisions that serio... Mental workload plays a vital role in cognitive impairment. The impairment refers to a person’s difficulty in remembering, receiving new information, learning new things, concentrating, or making decisions that seriously affect everyday life. In this paper, the simultaneous capacity (SIMKAP) experiment-based EEG workload analysis was presented using 45 subjects for multitasking mental workload estimation with subject wise attention loss calculation as well as short term memory loss measurement. Using an open access preprocessed EEG dataset, Discrete wavelet transforms (DWT) was utilized for feature extraction and Minimum redundancy and maximum relevancy (MRMR) technique was used to select most relevance features. Wavelet decomposition technique was also used for decomposing EEG signals into five sub bands. Fourteen statistical features were calculated from each sub band signal to form a 5 × 14 window size. The Neural Network (Narrow) classification algorithm was used to classify dataset for low and high workload conditions and comparison was made using some other machine learning models. The results show the classifier’s accuracy of 86.7%, precision of 84.4%, F1 score of 86.33%, and recall of 88.37% that crosses the state-of-the art methodologies in the literature. This prediction is expected to greatly facilitate the improved way in memory and attention loss impairments assessment. 展开更多
关键词 Attention Loss Cognitive Impairment EEG Feature Selection SIMKAP short term memory Loss Machine Learning WORKLOAD
在线阅读 下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction 被引量:1
4
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Short Term Traffic Flow Prediction Using Hybrid Deep Learning
5
作者 Mohandu Anjaneyulu Mohan Kubendiran 《Computers, Materials & Continua》 SCIE EI 2023年第4期1641-1656,共16页
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil... Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%. 展开更多
关键词 short term traffic flow prediction principal component analysis stacked auto encoders long short term memory k nearest neighbors:intelligent transportation system
在线阅读 下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
6
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
在线阅读 下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
7
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
在线阅读 下载PDF
Short-time prediction for traffic flow based on wavelet de-noising and LSTM model 被引量:3
8
作者 WANG Qingrong LI Tongwei ZHU Changfeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期195-207,共13页
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina... Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient. 展开更多
关键词 short-term traffic flow prediction deep learning wavelet denoising network matrix compression long short term memory(LSTM)network
在线阅读 下载PDF
The importance of music lessons
9
作者 张婷婷 《疯狂英语(新悦读)》 2025年第4期29-32,76,共5页
1 A study shows that music lessons obviously enhance children's cognitive abilities,including short⁃term memory and planning,which lead to improving academic performance.The research is the first large⁃scale and l... 1 A study shows that music lessons obviously enhance children's cognitive abilities,including short⁃term memory and planning,which lead to improving academic performance.The research is the first large⁃scale and long⁃term study to be adapted into the regular school curriculum.Visual arts lessons were also found to significantly improve children's visual memory. 展开更多
关键词 visual arts lessons cognitive abilities music lessons PLANNING regular school curriculumvisual arts lessons improving academic performancethe academic performance short term memory
在线阅读 下载PDF
Parameter Precise Estimation Technology of Active Segment of Non-cooperative Targets Based on Long Short-Term Memory
10
作者 Hui Xiao Chongrui Zhu +6 位作者 Qinghong Sheng Bo Wang Jun Li Xiao Ling Fan Wu Zhongheng Wu Ke Yu 《Space(Science & Technology)》 2024年第1期239-248,共10页
Traditional algorithms do not fully utilize the timing information of non-cooperative targets,and setting too many motion parameters can lead to complex dynamic model calculations.This paper proposes a long short-term... Traditional algorithms do not fully utilize the timing information of non-cooperative targets,and setting too many motion parameters can lead to complex dynamic model calculations.This paper proposes a long short-term memory(LSTM)network-based method for estimating the parameters of the active segment of the non-cooperative target under single-satellite observation.Based on the simulation training set of the active segment of the non-cooperative target,the network parameters of the LSTM network are designed,the motion characteristics of the active segment of the non-cooperative target are fully excavated through data-driven methods,and the candidate cutting trajectories are screened and predicted to realize the estimation of the motion parameters of the active segment of the non-cooperative target under the condition of single-satellite observation.The experimental results show that the estimation method proposed in this paper can effectively deal with the inaccurate problem with the non-cooperative target’s active segment motion model established under the condition of single-satellite observation,obtain more accurate active segment motion parameters,and provide a feasible new idea and method for the parameter estimation of the active segment of the non-cooperative target under the single-satellite observation. 展开更多
关键词 network parameters long short term memory complex dynamic model calculationsthis parameter estimation active segment motion parameters estimating parameters simulation training set
原文传递
Enhancing User Experience in AI-Powered Human-Computer Communication with Vocal Emotions Identification Using a Novel Deep Learning Method
11
作者 Ahmed Alhussen Arshiya Sajid Ansari Mohammad Sajid Mohammadi 《Computers, Materials & Continua》 2025年第2期2909-2929,共21页
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de... Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition. 展开更多
关键词 Human-computer communication(HCC) vocal emotions live vocal artificial intelligence(AI) deep learning(DL) selfish herd optimization-tuned long/short K term memory(SHO-LSTM)
在线阅读 下载PDF
Routing with Cooperative Nodes Using Improved Learning Approaches
12
作者 R.Raja N.Satheesh +1 位作者 J.Britto Dennis C.Raghavendra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2857-2874,共18页
In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the dep... In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches. 展开更多
关键词 Internet of Things(IoT) stacked long short term memory bi-directional long short term memory error rate stochastic gradient descent
在线阅读 下载PDF
结合稀疏表示和深度学习的视频中3D人体姿态估计 被引量:4
13
作者 王伟楠 张荣 郭立君 《中国图象图形学报》 CSCD 北大核心 2020年第3期456-467,共12页
目的 2D姿态估计的误差是导致3D人体姿态估计产生误差的主要原因,如何在2D误差或噪声干扰下从2D姿态映射到最优、最合理的3D姿态,是提高3D人体姿态估计的关键。本文提出了一种稀疏表示与深度模型联合的3D姿态估计方法,以将3D姿态空间几... 目的 2D姿态估计的误差是导致3D人体姿态估计产生误差的主要原因,如何在2D误差或噪声干扰下从2D姿态映射到最优、最合理的3D姿态,是提高3D人体姿态估计的关键。本文提出了一种稀疏表示与深度模型联合的3D姿态估计方法,以将3D姿态空间几何先验与时间信息相结合,达到提高3D姿态估计精度的目的。方法利用融合稀疏表示的3D可变形状模型得到单帧图像可靠的3D初始值。构建多通道长短时记忆MLSTM(multichannel long short term memory)降噪编/解码器,将获得的单帧3D初始值以时间序列形式输入到其中,利用MLSTM降噪编/解码器学习相邻帧之间人物姿态的时间依赖关系,并施加时间平滑约束,得到最终优化的3D姿态。结果在Human3.6M数据集上进行了对比实验。对于两种输入数据:数据集给出的2D坐标和通过卷积神经网络获得的2D估计坐标,相比于单帧估计,通过MLSTM降噪编/解码器优化后的视频序列平均重构误差分别下降了12.6%,13%;相比于现有的基于视频的稀疏模型方法,本文方法对视频的平均重构误差下降了6.4%,9.1%。对于2D估计坐标数据,相比于现有的深度模型方法,本文方法对视频的平均重构误差下降了12.8%。结论本文提出的基于时间信息的MLSTM降噪编/解码器与稀疏模型相结合,有效利用了3D姿态先验知识,视频帧间人物姿态连续变化的时间和空间依赖性,一定程度上提高了单目视频3D姿态估计的精度。 展开更多
关键词 姿态估计 3D人体姿态 稀疏表示 LSTM(long short term memory) 残差连接
原文传递
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:10
14
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
在线阅读 下载PDF
Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms 被引量:3
15
作者 Gopi Krishna Durbhaka Barani Selvaraj +3 位作者 Mamta Mittal Tanzila Saba Amjad Rehman Lalit Mohan Goyal 《Computers, Materials & Continua》 SCIE EI 2021年第2期2041-2059,共19页
Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maint... Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task.Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches,practices and technology during the last decade.Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect.This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory(LSTM)model in classifying the faults from the vibration signals data acquired from the gearbox.This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision.The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods. 展开更多
关键词 GEARBOX long short term memory fault classification swarm intelligence OPTIMIZATION condition monitoring
在线阅读 下载PDF
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:3
16
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
在线阅读 下载PDF
Application of deep learning technique to the sea surface height prediction in the South China Sea 被引量:3
17
作者 Tao Song Ningsheng Han +4 位作者 Yuhang Zhu Zhongwei Li Yineng Li Shaotian Li Shiqiu Peng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第7期68-76,共9页
A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal featu... A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future. 展开更多
关键词 deep learning sea surface height prediction convolutional operation long short term memory
在线阅读 下载PDF
A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process 被引量:2
18
作者 Yiming Bai Shuaiyu Xiang +1 位作者 Feifan Cheng Jinsong Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期266-276,共11页
With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate pred... With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management. 展开更多
关键词 Fault prognosis Process systems SAFETY PREDICTION Principal component analysis Long short term memory
在线阅读 下载PDF
Roman Urdu News Headline Classification Empowered with Machine Learning 被引量:2
19
作者 Rizwan Ali Naqvi Muhammad Adnan Khan +3 位作者 Nauman Malik Shazia Saqib Tahir Alyas Dildar Hussain 《Computers, Materials & Continua》 SCIE EI 2020年第11期1221-1236,共16页
Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent.Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for ... Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent.Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for writing.The communication using the Roman characters,which are used in the script of Urdu language on social media,is now considered the most typical standard of communication in an Indian landmass that makes it an expensive information supply.English Text classification is a solved problem but there have been only a few efforts to examine the rich information supply of Roman Urdu in the past.This is due to the numerous complexities involved in the processing of Roman Urdu data.The complexities associated with Roman Urdu include the non-availability of the tagged corpus,lack of a set of rules,and lack of standardized spellings.A large amount of Roman Urdu news data is available on mainstream news websites and social media websites like Facebook,Twitter but meaningful information can only be extracted if data is in a structured format.We have developed a Roman Urdu news headline classifier,which will help to classify news into relevant categories on which further analysis and modeling can be done.The author of this research aims to develop the Roman Urdu news classifier,which will classify the news into five categories(health,business,technology,sports,international).First,we will develop the news dataset using scraping tools and then after preprocessing,we will compare the results of different machine learning algorithms like Logistic Regression(LR),Multinomial Naïve Bayes(MNB),Long short term memory(LSTM),and Convolutional Neural Network(CNN).After this,we will use a phonetic algorithm to control lexical variation and test news from different websites.The preliminary results suggest that a more accurate classification can be accomplished by monitoring noise inside data and by classifying the news.After applying above mentioned different machine learning algorithms,results have shown that Multinomial Naïve Bayes classifier is giving the best accuracy of 90.17%which is due to the noise lexical variation. 展开更多
关键词 Roman urdu news headline classification long short term memory recurrent neural network logistic regression multinomial naïve Bayes random forest k neighbor gradient boosting classifier
在线阅读 下载PDF
Ensembling Neural Networks for User’s Indoor Localization Using Magnetic Field Data from Smartphones 被引量:2
20
作者 Imran Ashraf Soojung Hur +1 位作者 Yousaf Bin Zikria Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2021年第8期2597-2620,共24页
Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripp... Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches. 展开更多
关键词 Indoor localization magnetic field data long short term memory network data normalization gated recurrent unit network deep learning
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部