Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important r...Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of Jsc; and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of the carrier lifetime on Jsc also cannot be neglected. When the carrier lifetime is relatively short, Jsc only increases at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.展开更多
Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a signifi...Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.展开更多
Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been...Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been investigated by experimental method. The welding power source used for the research is an inverter with a special current waveform control. It is shown that the spatter decreases at first then increases with each increase of the low current period, current increase rate and the maximum current limit. The test results are provided for welding of 1 mm and 3 mm mild steel at speed of 1.2 m/min. The stable GMA W-S process under high speed welding condition has been achieved by optimizing the parameters.展开更多
A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in...A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.展开更多
To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreemen...To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.展开更多
Objective To investigate the property of the endometrium ion transport in the normal estruation and ovariectomize rats. Methods The basic electrophysiological property of the endometrium was carried out by mean of the...Objective To investigate the property of the endometrium ion transport in the normal estruation and ovariectomize rats. Methods The basic electrophysiological property of the endometrium was carried out by mean of the short circuit current (Isc) recording with the rats. Results The baseline Lsc and the transepithelial resistance (Rte) were different between the estruation and ovariectomized groups. Apical application of Na+ channel blocker, amiloride (10 μmol/L), or CFTR Cl- channel agonist, forskolin (10 μmol/L) did not significantly affect the Lc in the two groups. However, the 1sc in the model group was more sensitive to the CFTR Cl- channel blocker (glibenclamide, 1 mmol/L, apical) decreased about 27.0% (P〈0.05, n=6), no remarkably changes in the estruation rats. While apical application CA CC CI-channel blocker, DIDS (4, 4 '-diisothiocyanostilbene- 2,2 '-disulfonic, 100 μmol/L), the Isc was much more sensitive, percentage almost to 36.52% (P〈0.01) in the model group than that in the control Furthermore, basolateral application of bumetanide (100μmol/L), a blocker of Na+-K+-2Cl- cotransport, didn't significantly reduce the Lc in the two groups. Conclusion The baseline Lsc and membrane resistance in the ovariectomize group is much higher than that in the normal estruation group, and the endometrial epithelium CI- secretion may be mediated by predominantly calcium-dependent CI- channels (CACC) and activating adenylate cyclase and apical cAMP-dependent Cl- channels (CFTR) in the model group with minor contributions in the control. Furthermore, the endometrial epithelium responses to different stimulants exists difference in the control and model group a likely mechanism for the ovary hormone.展开更多
With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the sh...With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the short circuit current. For the power grid that short circuit current level closes to the interrupting capacity of circuit breaker, it’s necessary to fully consider all kinds of influence factors, careful checking, so as to obtain more accurate calculation results of short circuit current. In 2018, two ±800 kV high-power Ultra High Voltage Direct Current (UHVDC) transmission projects will be connected with Shaanxi power grid, accompanied by a lot of concomitant fossil-fuel generating plants as power resource, and also a large number of new energy source, includes wind power generation and photovoltaic power generation. Around one of the UHVDC converter stations, short circuit current may exceed the withstand limit of some certain circuit breakers. In order to get more accurate short circuit current calculation results, three measures are used: 1) contrastive calculation and analysis by algorithm based on schemes and algorithm based on power flow;2) analysis the influence of UHVDC by electromagnetic transient and electromechanical transient hybrid simulation;3) considered a detailed model of Doubly Fed Induction Generator (DFIG) with low voltage ride through characteristics. The calculation results shows that: in the typical operation mode of Shaanxi power grid of 2018, the original calculation results by conventional calculation method are coincident with the results by considering the influence of algorithms, UHVDC and DFIG in large, in which: the results of the algorithm based on power flow are smaller than that of the algorithm based on schemes about 2 - 8 kA;the steady values of the short circuit current provided by UHVDC converterstation (includes rectifiers and smoothing capacitors) are about 0 - 3 kA;the steady values of the short circuit current provided by DFIG are about 0 - 5 kA. The calculation results can provide reference for the selection of the circuit breaker, and it can be verified by fault recording data in the future.展开更多
The commissioning of Southern Hami-Zhengzhou ±800 kV UHVDC transmission project has important significance to heighten operation reliability, transfer capability and supply electric ability of Henan power grid. H...The commissioning of Southern Hami-Zhengzhou ±800 kV UHVDC transmission project has important significance to heighten operation reliability, transfer capability and supply electric ability of Henan power grid. However, short circuit currents of 500 kV buses in the Center of Henan are almost close to the operation upper limitation. In order to decrease the short circuit currents effectively, it’s necessary to strengthen the network structure of Center of Henan power grid and calculate short circuit currents. Two schemes of strengthening the network structure of Center of Henan power grid are studied. The calculated values of short circuit currents of some important 500 kV buses in the two schemes are still bigger than excepted. According to the latest Plan of State Grid, Yubei UHV substation and Zhumadian UHV substation located in Henan power grid. The calculated values of short circuit currents of some important 500 kV buses with the commissioning of Yubei UHV and Zhumadian UHV are qualified. So, reasonable network structure with UHV is suitable to heighten transfer capability and supply electric ability of Henan power grid.展开更多
Dielectric wall accelerator(DWA), towards high gradient acceleration field(30 MeV/m–100 MeV/m), is under development at Institute of Modern Physics. A prototype was designed and constructed to prove the principle. Th...Dielectric wall accelerator(DWA), towards high gradient acceleration field(30 MeV/m–100 MeV/m), is under development at Institute of Modern Physics. A prototype was designed and constructed to prove the principle. This needs a short pulse high current electron source to match the acceleration field generated by the Blumlein-type pulse forming lines(PFLs). In this paper, we report the design and test of a new type short pulse high current electron gun based on principle of vacuum arc discharge. Electron beams of 100 mA with pulse width of 10 ns were obtained.展开更多
With the rapid development of economy, strengthen the continuous construction of national infrastructure, etc., many industry demand for steel, steel enterprise capacity expands, at the same time, the steel enterprise...With the rapid development of economy, strengthen the continuous construction of national infrastructure, etc., many industry demand for steel, steel enterprise capacity expands, at the same time, the steel enterprises to positive response to the call of national energy conservation and emission reduction, using plant waste heat green development is the only way to realize the transformation and upgrading of the steel industry. This paper will be mainly for the domestic steel enterprise 6kV system short circuit current exceeds the limit and take the restrictive measures for detailed analysis and discussion for the industry reference.展开更多
To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However,...To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.展开更多
The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination o...The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination of the product and TEAM Problem 21B, the surface impedance method shows its great advantage in the calculation of eddy current loss.展开更多
In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical...In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical performance is mainly described by measuring both cell short circuit current and open circuit voltage. The measurements of this cell by using multimeters suffer from some problems because the cell has high current intensity with low output voltage. So, the solar cell short circuit current values are obtained by measuring the voltage developed across a known resistance Current Shunt. Samples of the obtained current values are accurately calibrated by using a Micropotentiometer (μpot) thermal element (TE) to validate this new measuring technique. Moreover, the solar cell open circuit voltage has been measured. Besides, the cell output power has been calculated and can be correlated with the measured incident radiation.展开更多
The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shun...The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed.展开更多
A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder ca...A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.展开更多
It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the conc...It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.展开更多
The paper deals with the heating of electrons and current rectification in contact, which is located in an alternating electromagnetic field. It was found that the electrical component of the microwave (UHF) waves ins...The paper deals with the heating of electrons and current rectification in contact, which is located in an alternating electromagnetic field. It was found that the electrical component of the microwave (UHF) waves inside the p-n-junction was curved. This leads to the perpendicular component of the electric field of the microwave wave. This component modulates the height of the potential barrier with the frequency of the microwave. In the p-n-junction, straightening microwave current occurs. It is shown that the rectifying contact in the microwave electromagnetic field is always an electromotive force. This is due to carrier heating and straightening microwave current. It is shown that electron heating and straightening of the microwave power will lead to higher ideality factor of the diode.展开更多
This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medi...This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medium voltage switchgear of a nuclear power plant. This consideration is important for both measurement and protection functions of the digital protective relays. This is a study to ascertain the best options for a suitable solution to prevent CT saturation in relations to its protective capabilities during short circuit fault without compromising the CT accuracy class during normal operation of the system, while ensuring its conformity to the design requirement is within limit. The advantages of current transformers have proven not only to be reliable and safe, but also are of easy handling, reduction of the cost and components on the MV (medium voltage) switchgear. The purpose of this research is to identify best approach to resolve the existing problems in the current protection system. With the view of LPCT (low power current transformer) which has been newly constructed by few manufacturers to provide good protection and a wide range of measuring function without errors, some other solutions will be considered in this research.展开更多
文摘Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of Jsc; and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of the carrier lifetime on Jsc also cannot be neglected. When the carrier lifetime is relatively short, Jsc only increases at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.
基金supported by State Key Laboratory of Power Transmission Equipment and System Security(No.2007DA10512711102,No.2007DA10512709202)Program of Introducing Talents of Discipline to Universities("111"Program)(No.B08036)the Fundamental Research Funds for the Central Universities(No.CDJXS11150026)
文摘Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.
文摘Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding (GMAW-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been investigated by experimental method. The welding power source used for the research is an inverter with a special current waveform control. It is shown that the spatter decreases at first then increases with each increase of the low current period, current increase rate and the maximum current limit. The test results are provided for welding of 1 mm and 3 mm mild steel at speed of 1.2 m/min. The stable GMA W-S process under high speed welding condition has been achieved by optimizing the parameters.
基金The project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200428)the National Natural Science Foundation of China (10272072and 50424913)the Shanghai Natural Science Foundation(05ZR14048)
文摘A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.
基金supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology and Planning(KETEP)grant funded by the Korea Government Ministry of Knowledge Economy(No.2009T100200067)
文摘To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.
基金Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(PHR201008384)Foundation Clinic Research Program of Capital Medical University(10JL31 and 10JL-L05)
文摘Objective To investigate the property of the endometrium ion transport in the normal estruation and ovariectomize rats. Methods The basic electrophysiological property of the endometrium was carried out by mean of the short circuit current (Isc) recording with the rats. Results The baseline Lsc and the transepithelial resistance (Rte) were different between the estruation and ovariectomized groups. Apical application of Na+ channel blocker, amiloride (10 μmol/L), or CFTR Cl- channel agonist, forskolin (10 μmol/L) did not significantly affect the Lc in the two groups. However, the 1sc in the model group was more sensitive to the CFTR Cl- channel blocker (glibenclamide, 1 mmol/L, apical) decreased about 27.0% (P〈0.05, n=6), no remarkably changes in the estruation rats. While apical application CA CC CI-channel blocker, DIDS (4, 4 '-diisothiocyanostilbene- 2,2 '-disulfonic, 100 μmol/L), the Isc was much more sensitive, percentage almost to 36.52% (P〈0.01) in the model group than that in the control Furthermore, basolateral application of bumetanide (100μmol/L), a blocker of Na+-K+-2Cl- cotransport, didn't significantly reduce the Lc in the two groups. Conclusion The baseline Lsc and membrane resistance in the ovariectomize group is much higher than that in the normal estruation group, and the endometrial epithelium CI- secretion may be mediated by predominantly calcium-dependent CI- channels (CACC) and activating adenylate cyclase and apical cAMP-dependent Cl- channels (CFTR) in the model group with minor contributions in the control. Furthermore, the endometrial epithelium responses to different stimulants exists difference in the control and model group a likely mechanism for the ovary hormone.
文摘With the development of power system, the level of short circuit current will increase accordingly. In general, the influence of the HVDC system and the new energy source is not considered in the calculation of the short circuit current. For the power grid that short circuit current level closes to the interrupting capacity of circuit breaker, it’s necessary to fully consider all kinds of influence factors, careful checking, so as to obtain more accurate calculation results of short circuit current. In 2018, two ±800 kV high-power Ultra High Voltage Direct Current (UHVDC) transmission projects will be connected with Shaanxi power grid, accompanied by a lot of concomitant fossil-fuel generating plants as power resource, and also a large number of new energy source, includes wind power generation and photovoltaic power generation. Around one of the UHVDC converter stations, short circuit current may exceed the withstand limit of some certain circuit breakers. In order to get more accurate short circuit current calculation results, three measures are used: 1) contrastive calculation and analysis by algorithm based on schemes and algorithm based on power flow;2) analysis the influence of UHVDC by electromagnetic transient and electromechanical transient hybrid simulation;3) considered a detailed model of Doubly Fed Induction Generator (DFIG) with low voltage ride through characteristics. The calculation results shows that: in the typical operation mode of Shaanxi power grid of 2018, the original calculation results by conventional calculation method are coincident with the results by considering the influence of algorithms, UHVDC and DFIG in large, in which: the results of the algorithm based on power flow are smaller than that of the algorithm based on schemes about 2 - 8 kA;the steady values of the short circuit current provided by UHVDC converterstation (includes rectifiers and smoothing capacitors) are about 0 - 3 kA;the steady values of the short circuit current provided by DFIG are about 0 - 5 kA. The calculation results can provide reference for the selection of the circuit breaker, and it can be verified by fault recording data in the future.
文摘The commissioning of Southern Hami-Zhengzhou ±800 kV UHVDC transmission project has important significance to heighten operation reliability, transfer capability and supply electric ability of Henan power grid. However, short circuit currents of 500 kV buses in the Center of Henan are almost close to the operation upper limitation. In order to decrease the short circuit currents effectively, it’s necessary to strengthen the network structure of Center of Henan power grid and calculate short circuit currents. Two schemes of strengthening the network structure of Center of Henan power grid are studied. The calculated values of short circuit currents of some important 500 kV buses in the two schemes are still bigger than excepted. According to the latest Plan of State Grid, Yubei UHV substation and Zhumadian UHV substation located in Henan power grid. The calculated values of short circuit currents of some important 500 kV buses with the commissioning of Yubei UHV and Zhumadian UHV are qualified. So, reasonable network structure with UHV is suitable to heighten transfer capability and supply electric ability of Henan power grid.
基金Supported by knowledge innovation project of Chinese academy of sciences(No.Y115280YZD)the National Natural Science Foundation of China(No.11105195 and No.11105197)
文摘Dielectric wall accelerator(DWA), towards high gradient acceleration field(30 MeV/m–100 MeV/m), is under development at Institute of Modern Physics. A prototype was designed and constructed to prove the principle. This needs a short pulse high current electron source to match the acceleration field generated by the Blumlein-type pulse forming lines(PFLs). In this paper, we report the design and test of a new type short pulse high current electron gun based on principle of vacuum arc discharge. Electron beams of 100 mA with pulse width of 10 ns were obtained.
文摘With the rapid development of economy, strengthen the continuous construction of national infrastructure, etc., many industry demand for steel, steel enterprise capacity expands, at the same time, the steel enterprises to positive response to the call of national energy conservation and emission reduction, using plant waste heat green development is the only way to realize the transformation and upgrading of the steel industry. This paper will be mainly for the domestic steel enterprise 6kV system short circuit current exceeds the limit and take the restrictive measures for detailed analysis and discussion for the industry reference.
文摘To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.
文摘The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination of the product and TEAM Problem 21B, the surface impedance method shows its great advantage in the calculation of eddy current loss.
文摘In this paper, a new technique using a Current Shunt and a Micropotentiometer has been used to study the electrical performance of a large area multicrystalline silicon solar cell at outdoor conditions. The electrical performance is mainly described by measuring both cell short circuit current and open circuit voltage. The measurements of this cell by using multimeters suffer from some problems because the cell has high current intensity with low output voltage. So, the solar cell short circuit current values are obtained by measuring the voltage developed across a known resistance Current Shunt. Samples of the obtained current values are accurately calibrated by using a Micropotentiometer (μpot) thermal element (TE) to validate this new measuring technique. Moreover, the solar cell open circuit voltage has been measured. Besides, the cell output power has been calculated and can be correlated with the measured incident radiation.
文摘The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed.
基金This project supported by The National Natural Science Foundation of China(No.11872253).
文摘A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.
文摘It is shown that the nonideality coefficient m actually depends on the electron temperature Te, and the hole temperature Th. We get more general expression for the nonideality coefficient, taking into account the concentration of electrons and holes, as well as their temperature, coefficient and diffusion length, the temperature of the phonons, the applied voltage, and the height of the potential barrier.
文摘The paper deals with the heating of electrons and current rectification in contact, which is located in an alternating electromagnetic field. It was found that the electrical component of the microwave (UHF) waves inside the p-n-junction was curved. This leads to the perpendicular component of the electric field of the microwave wave. This component modulates the height of the potential barrier with the frequency of the microwave. In the p-n-junction, straightening microwave current occurs. It is shown that the rectifying contact in the microwave electromagnetic field is always an electromotive force. This is due to carrier heating and straightening microwave current. It is shown that electron heating and straightening of the microwave power will lead to higher ideality factor of the diode.
文摘This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medium voltage switchgear of a nuclear power plant. This consideration is important for both measurement and protection functions of the digital protective relays. This is a study to ascertain the best options for a suitable solution to prevent CT saturation in relations to its protective capabilities during short circuit fault without compromising the CT accuracy class during normal operation of the system, while ensuring its conformity to the design requirement is within limit. The advantages of current transformers have proven not only to be reliable and safe, but also are of easy handling, reduction of the cost and components on the MV (medium voltage) switchgear. The purpose of this research is to identify best approach to resolve the existing problems in the current protection system. With the view of LPCT (low power current transformer) which has been newly constructed by few manufacturers to provide good protection and a wide range of measuring function without errors, some other solutions will be considered in this research.