For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test ...For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.展开更多
The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal ...The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.展开更多
In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capab...In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.展开更多
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up...The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.展开更多
A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater ex...A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.展开更多
This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,w...This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.展开更多
A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section ...A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.展开更多
A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force ...A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.展开更多
This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors....This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipment such as mobile PCs (personal computers), video cameras, car navigation systems and so on. Hence, the rotating shaft has a possibility to come in contact with the bearing by external shocks and it causes wear or seizure to the bearing surface. To avoid the problem, it is extremely important to know how the spindle moves against the large shock on HDDs experimentally. However, as far as the authors know, there are few experimental studies treating the shock response of HDD spindles. In this paper, firstly, we propose a new test rig and experimental method for shock response of FDB spindles. Then the shock tests against the radial and axial disturbance on FDB spindle for 2.5" HDD are conducted. Finally, the experimental results of shock response waveforms and maximum displacement of disk are shown.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(...NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.展开更多
Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100...Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.展开更多
The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train...The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train have been taken and the dynamics of upstream propagation of the oblique shock train have been analyzed from the synchronized schlieren imaging with the dynamic pressure measurements.The formation and propagation of the oblique shock train are initiated by the throttling device at the downstream end of the duct model.Multiple reflected shocks,expansion fans and separated flow bubbles exist in the unthrottled flow,causing three adversepressure-gradient phases and three favorable-pressure-gradient phases upstream the oblique shock train.The leading edge of the oblique shock train propagates upstream,and translates to be asymmetric with the increase of backpressure.The upstream propagation rate of the oblique shock train increases rapidly when the leading edge of the oblique shock train encounters the separation bubble near the shock reflection point and the adverse-pressure-gradient phase,while the oblique shock train slow movement when the leading edge of the oblique shock train is in the favorablepressure-gradient phase for unthrottled flow.The asymmetric flow pattern and oscillatory nature of the oblique shock train are observed throughout the whole upstream propagation process.展开更多
Introduction: Functional integrity of the hypothalamic pituitary axis is disrupted during severe infection or stress. The observed blunted response to corticotropin was interpreted as impaired secretory reserve of the...Introduction: Functional integrity of the hypothalamic pituitary axis is disrupted during severe infection or stress. The observed blunted response to corticotropin was interpreted as impaired secretory reserve of the adrenal glands and was termed as relative adrenocortical insufficiency. Aim of the work: To study the incidence of adrenal insufficiency in patients developed cardiogenic shock complicating ST segment elevation myocardial infarction. Materials and methods: Prospective cohort study was done for 90 patients admitted to Algalaa Hospital for whom basal cortisol and ACTH level were measured immediately before a standard-dose (250 μg) ACTH stimulation test (SST) and 60 minutes after SST Δmax is defined as the difference between the maximal value after the test and basal level of serum cortisol. Results: Baseline ACTH and total cortisol showed positive correlation to clinical severity scores (APACHE II and Lactate), LVEF as well as vasoactive inotrope score, all with significant p value (0.000). The higher baseline cortisol level was co-related to increased mortality (Baseline serum cortisol level was significantly lower in survivors (30.6 ± 6.1 vs 45.0 ± 16.3) p value: 0.000) while the better response of the adrenal gland to short stimulation test was co-related more to survival as detected by Δmax TC (difference of cortisol level before and after SST) (13.8 ±3.8 in survivors vs 8.5 ± 4.42 in non survivors) p value 0.000. Conclusion: A high baseline plasma TC was associated with increased mortality in patients with cardiogenic shock post acute myocardial infarction. Patients with lower baseline TC, but with a better adrenal response, appeared to have a survival benefit.展开更多
This paper mainly describes fracture mechanics and the application of the newly developed wedge splitting test in evaluating the thermal shock resistance of refractories. It is necessary to evaluate fracture propertie...This paper mainly describes fracture mechanics and the application of the newly developed wedge splitting test in evaluating the thermal shock resistance of refractories. It is necessary to evaluate fracture properties owning to the heterogeneity of refractories.展开更多
基金supported by China Naval Armament Department (No. 05131/1046).
文摘For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.
基金partly supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (Grant No. 19121587)supported by the Natural Science Foundation of Shaanxi Province (No.2021KW-25)。
文摘The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.
文摘In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.
文摘The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.
文摘A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.
文摘This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.
文摘A newly designed shock-tube for biological testing has been built in our labo-ratory.This tube is 39.34 m long.It consists of several sections:high pressure section,divergent section,transitional section,test section and wave-dissipated section.In theopen condition,the maximal overpressure is about 214,3 kPa,while in the closed condi-tion,the maximal overpressure may go up to 630.3 kPa.The energy source is compres-sed air.Using this equipment,we are able to inflict blast injuries with various degreesof severity in rabbits,dogs and sheep.
文摘A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.
文摘This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipment such as mobile PCs (personal computers), video cameras, car navigation systems and so on. Hence, the rotating shaft has a possibility to come in contact with the bearing by external shocks and it causes wear or seizure to the bearing surface. To avoid the problem, it is extremely important to know how the spindle moves against the large shock on HDDs experimentally. However, as far as the authors know, there are few experimental studies treating the shock response of HDD spindles. In this paper, firstly, we propose a new test rig and experimental method for shock response of FDB spindles. Then the shock tests against the radial and axial disturbance on FDB spindle for 2.5" HDD are conducted. Finally, the experimental results of shock response waveforms and maximum displacement of disk are shown.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
基金Project(1343-77212) supported by the Innovation Program for Graduate Students of Central South University, China
文摘NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.
基金supported by the National Natural Science Foundation of China (No. 11372356)
文摘Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.
基金supported by the National Natural Science Foundation of China(Nos.51476076 and 10702029)
文摘The structure and dynamics of an oblique shock train in a duct model are investigated experimentally in a hypersonic wind tunnel.Measurements of the pressure distribution in front of and across the oblique shock train have been taken and the dynamics of upstream propagation of the oblique shock train have been analyzed from the synchronized schlieren imaging with the dynamic pressure measurements.The formation and propagation of the oblique shock train are initiated by the throttling device at the downstream end of the duct model.Multiple reflected shocks,expansion fans and separated flow bubbles exist in the unthrottled flow,causing three adversepressure-gradient phases and three favorable-pressure-gradient phases upstream the oblique shock train.The leading edge of the oblique shock train propagates upstream,and translates to be asymmetric with the increase of backpressure.The upstream propagation rate of the oblique shock train increases rapidly when the leading edge of the oblique shock train encounters the separation bubble near the shock reflection point and the adverse-pressure-gradient phase,while the oblique shock train slow movement when the leading edge of the oblique shock train is in the favorablepressure-gradient phase for unthrottled flow.The asymmetric flow pattern and oscillatory nature of the oblique shock train are observed throughout the whole upstream propagation process.
文摘Introduction: Functional integrity of the hypothalamic pituitary axis is disrupted during severe infection or stress. The observed blunted response to corticotropin was interpreted as impaired secretory reserve of the adrenal glands and was termed as relative adrenocortical insufficiency. Aim of the work: To study the incidence of adrenal insufficiency in patients developed cardiogenic shock complicating ST segment elevation myocardial infarction. Materials and methods: Prospective cohort study was done for 90 patients admitted to Algalaa Hospital for whom basal cortisol and ACTH level were measured immediately before a standard-dose (250 μg) ACTH stimulation test (SST) and 60 minutes after SST Δmax is defined as the difference between the maximal value after the test and basal level of serum cortisol. Results: Baseline ACTH and total cortisol showed positive correlation to clinical severity scores (APACHE II and Lactate), LVEF as well as vasoactive inotrope score, all with significant p value (0.000). The higher baseline cortisol level was co-related to increased mortality (Baseline serum cortisol level was significantly lower in survivors (30.6 ± 6.1 vs 45.0 ± 16.3) p value: 0.000) while the better response of the adrenal gland to short stimulation test was co-related more to survival as detected by Δmax TC (difference of cortisol level before and after SST) (13.8 ±3.8 in survivors vs 8.5 ± 4.42 in non survivors) p value 0.000. Conclusion: A high baseline plasma TC was associated with increased mortality in patients with cardiogenic shock post acute myocardial infarction. Patients with lower baseline TC, but with a better adrenal response, appeared to have a survival benefit.
文摘This paper mainly describes fracture mechanics and the application of the newly developed wedge splitting test in evaluating the thermal shock resistance of refractories. It is necessary to evaluate fracture properties owning to the heterogeneity of refractories.