Current research shows that the traditional shock control bump(SCB) can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it...Current research shows that the traditional shock control bump(SCB) can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it can decrease the adverse pressure gradient. This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance. Based on RAE2822 airfoil, two types of SCB are designed according to the two different mechanisms. By using Reynolds-averaged Navier-Stokes(RANS) and unsteady Reynolds-averaged Navier-Stokes(URANS) methods to analyze the properties of RAE2822 airfoil with and without SCB, the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil. The traditional SCB can only weaken the intensity of the shock under the design condition. Under the off-design conditions, the SCB does not do much to or even worsen the buffet performance. Indeed, the use of backward bump can flatten the leeward side of the airfoil, and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.展开更多
Based on the supercritical "wingl" which was released in the DPW-III conference, multi-objective optimization has been done to increase the lift-drag ratio at cruise condition and improve transonic buffet boundary a...Based on the supercritical "wingl" which was released in the DPW-III conference, multi-objective optimization has been done to increase the lift-drag ratio at cruise condition and improve transonic buffet boundary and drag-rise performance. Hicks-Henne shape functions are used to represent the bump shape. In the design optimization to increase lift-drag ratio, the objectives involve the cruise point and three other off-design points nearby. In the other optimization process to improve buffet and drag-rise performance, three buffet onset points near the cruise point and one drag-rise point are selected as the design points. Non-dominating sort genetic algorithm II (NSGA-II) is used in both processes. Additionally, individual analysis for every selected point on the Pareto frontier is conducted in order to avoid local convergence and achieve global optimum. Re- sults of optimization for aerodynamic efficiency show a decrease of 11 counts in drag at the cruise point. Drag at nearby off-design points are also reduced to some extent. Similar approaches are made to improve buffet and drag-rise characteristics, resulting in significant improvements in both ways.展开更多
Shock control bumps are a promising technique in reducing wave drag of civil transport aircraft flying at transonic speeds.This paper investigates the optimization of 3D shock control bumps on a supercritical wing wit...Shock control bumps are a promising technique in reducing wave drag of civil transport aircraft flying at transonic speeds.This paper investigates the optimization of 3D shock control bumps on a supercritical wing with a sweep angle of 16°at the1/4 chord.A similar supercritical wing with a higher sweep angle of 24.5°at the 1/4 chord has been adopted as a baseline for the study.Numerical results show that the drag coefficient of the low sweep wing with the optimized 3D shock control bumps is reduced below that for the high sweep wing,indicating shock control bumps can be used as an effective means to reduce the wave drag caused by reducing the wing sweep angle.From the point of view of the wing structure design,lower sweep angle will also bring the benefits of weight reduction,resulting in further fuel reduction.展开更多
Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for ...Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for smearing the passage shock foot via Shock Control Bump(SCB)located on transonic compressor rotor blade suction side is implemented to shrink the region of boundary layer separation.The curved windward section of SCB with constant adverse pressure gradient is constructed ahead of passage shock-impingement point at design rotor speed of Rotor 37 to get the improved model.Numerical investigations on both two models have been conducted employing Reynolds-Averaged Navier-Stokes(RANS)method to reveal flow physics of SCB.Comparisons and analyses on simulation results have also been carried out,showing that passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot for moderate adverse pressure gradient as well as suppression of boundary layer separations and secondary flow of low-momentum fluid within boundary layer.It is found that adiabatic efficiency and total pressure ratio of improved blade exceeds those of baseline at 95%-100%design rotor speed,and then slightly worsens with decrease of rotatory speed till both equal below 60%rated speed.The investigated conclusion implies a potential promise for future practical applications of SCB in both transonic and supersonic compressors.展开更多
This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpo...This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.展开更多
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an...The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an additional auxiliary duct.In this paper,the schlieren photographs at the exit of the high-efficiency SVCSN and the wall static pressure distributions were obtained by experiments,and the numerical results were used to enrich the thrust vectoring characteristics.The effects of the auxiliary injection were analyzed first to reveal the advantages of the high-efficiency SVCSN compared to the conventional SVCSN.Then,the aerodynamic parameters and the structural parameters of the high-efficiency SVCSN were investigated,including the Nozzle Pressure Ratio(NPR),the Secondary flow Pressure Ratio(SPR),the secondary flow relative area and the secondary flow injection angle.Finally,the coupling performance of the high-efficiency SVCSN is studied by using the approximate modeling technology.Results show that the auxiliary injection increases the range between the two shock legs of the “k”shock wave induced by the secondary flow,then causes the separation zone and high-pressure boss of the down wall to expand upstream,and finally results in a prominent increase in the thrust vectoring performance.The thrust vectoring angle and Vectoring Efficiency(VE)of the high-efficiency SVCSN are about 61.6%and 75.7%,respectively,higher than those of the conventional SVCSN at NPR=6.The effects of the NPR and the SPR on the thrust vectoring performance of the high-efficiency SVCSN are coupled with each other.A larger NPR matched with a smaller SPR shows better thrust vectoring performance.The maximum fluctuations in thrust vectoring angle and VE caused by the NPR and SPR are about 22%and 64%.The VE decreases monotonously with the increase of the secondary flow relative area.Smaller secondary flow injection angle shows better thrust vector performance,and the thrust vectoring angle and VE of the secondary flow injection angle of 90are about 20%higher than those of the secondary flow injection angle of 110at NPR=6.Therefore,the secondary flow relative area of 0.06 and the secondary flow injection angle of 90are recommended.展开更多
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ...The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.展开更多
A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater ex...A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
In the present study, a numerical investigation is carried out on the aerodynamic performance of a supercritical airfoil RAE 2822. Transonic flow fields are considered where self-excited shock wave oscillation prevail...In the present study, a numerical investigation is carried out on the aerodynamic performance of a supercritical airfoil RAE 2822. Transonic flow fields are considered where self-excited shock wave oscillation prevails. To control the shock oscillation, a passive technique in the form of an open rectangular cavity is introduced on the upper surface of the airfoil where the shock wave oscillates. Reynolds Averaged Navier-Stokes (RANS) equations have been used to predict the aerodynamic behavior of the baseline airfoil and airfoil with cavity at Mach number of 0.729 and at angle of attack of 5°. The aerodynamic characteristics of the baseline airfoil are well validated with the available experimental data. It is observed that the introduction of a cavity around the airfoil upper surface can completely stop the self-excited shock wave oscillation and successively improve the aerodynamic characteristics.展开更多
Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against da...Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.展开更多
The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducin...The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the inter- action. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.展开更多
The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide ...The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves.This work proposes a novel approach for actively controlling intense shock waves in solids,inspired by the principles of optical and explosive lenses.Specifically,by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix,we prove the feasibility of transforming a planar shock into a spherically converging shock.This is based on oblique shock theory,according to which shock waves pass through an oblique interface and then undergo deflection.Both experimental and simulation results demonstrate that,as expected,the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure.Thus,this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids.It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies.展开更多
To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active...To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.展开更多
Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100...Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.展开更多
The paper aims to analyze the impacts of punch damper stiffness on equipment base and vibration, andintroduce the development and application of a disc spring damper featured hard-soft-hard variable stiffness. Adamper...The paper aims to analyze the impacts of punch damper stiffness on equipment base and vibration, andintroduce the development and application of a disc spring damper featured hard-soft-hard variable stiffness. Adamper has four damping columns with C-type disc springs whose laminates plate number gradually increases setby set. Compared with its counterparts, this kind of dampers has the advantages of high energy absorption andvibration damping effect, which not only can effectively reduce the vibration of the foundation of punch press,but also prevents the vibration range from increasing. Also, this kind of dampers is of low cost and convenient touse.展开更多
In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the...In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.展开更多
文摘Current research shows that the traditional shock control bump(SCB) can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it can decrease the adverse pressure gradient. This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance. Based on RAE2822 airfoil, two types of SCB are designed according to the two different mechanisms. By using Reynolds-averaged Navier-Stokes(RANS) and unsteady Reynolds-averaged Navier-Stokes(URANS) methods to analyze the properties of RAE2822 airfoil with and without SCB, the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil. The traditional SCB can only weaken the intensity of the shock under the design condition. Under the off-design conditions, the SCB does not do much to or even worsen the buffet performance. Indeed, the use of backward bump can flatten the leeward side of the airfoil, and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.
文摘Based on the supercritical "wingl" which was released in the DPW-III conference, multi-objective optimization has been done to increase the lift-drag ratio at cruise condition and improve transonic buffet boundary and drag-rise performance. Hicks-Henne shape functions are used to represent the bump shape. In the design optimization to increase lift-drag ratio, the objectives involve the cruise point and three other off-design points nearby. In the other optimization process to improve buffet and drag-rise performance, three buffet onset points near the cruise point and one drag-rise point are selected as the design points. Non-dominating sort genetic algorithm II (NSGA-II) is used in both processes. Additionally, individual analysis for every selected point on the Pareto frontier is conducted in order to avoid local convergence and achieve global optimum. Re- sults of optimization for aerodynamic efficiency show a decrease of 11 counts in drag at the cruise point. Drag at nearby off-design points are also reduced to some extent. Similar approaches are made to improve buffet and drag-rise characteristics, resulting in significant improvements in both ways.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Shock control bumps are a promising technique in reducing wave drag of civil transport aircraft flying at transonic speeds.This paper investigates the optimization of 3D shock control bumps on a supercritical wing with a sweep angle of 16°at the1/4 chord.A similar supercritical wing with a higher sweep angle of 24.5°at the 1/4 chord has been adopted as a baseline for the study.Numerical results show that the drag coefficient of the low sweep wing with the optimized 3D shock control bumps is reduced below that for the high sweep wing,indicating shock control bumps can be used as an effective means to reduce the wave drag caused by reducing the wing sweep angle.From the point of view of the wing structure design,lower sweep angle will also bring the benefits of weight reduction,resulting in further fuel reduction.
基金the funding from the National Key Research and Development Program of China(No.2016YFB0901402)the Key Project of National Natural Science Foundation of China(No.51790513)。
文摘Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for smearing the passage shock foot via Shock Control Bump(SCB)located on transonic compressor rotor blade suction side is implemented to shrink the region of boundary layer separation.The curved windward section of SCB with constant adverse pressure gradient is constructed ahead of passage shock-impingement point at design rotor speed of Rotor 37 to get the improved model.Numerical investigations on both two models have been conducted employing Reynolds-Averaged Navier-Stokes(RANS)method to reveal flow physics of SCB.Comparisons and analyses on simulation results have also been carried out,showing that passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot for moderate adverse pressure gradient as well as suppression of boundary layer separations and secondary flow of low-momentum fluid within boundary layer.It is found that adiabatic efficiency and total pressure ratio of improved blade exceeds those of baseline at 95%-100%design rotor speed,and then slightly worsens with decrease of rotatory speed till both equal below 60%rated speed.The investigated conclusion implies a potential promise for future practical applications of SCB in both transonic and supersonic compressors.
基金National Natural Science Foundation of China(50776100)
文摘This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
基金supported by the Science Center for Gas Turbine Project,China(Nos.P2022-B-Ⅱ-010-001 and P2022-B-I-002-001)the National Natural Science Foundation of China(Nos.52376032 and 52076180)+2 种基金the Funds for Distinguished Young Scholars of Shaanxi Province,China(No.2021JC-10)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0015-0036)the Fundamental Research Funds for the Central Universities,China(No.501XTCX2023146001).
文摘The high-efficiency Shock Vectoring Control Serpentine Nozzle(SVCSN)takes into account both thrust vectoring and infrared stealth,and significantly improves the comprehensive performance of the aero-engines through an additional auxiliary duct.In this paper,the schlieren photographs at the exit of the high-efficiency SVCSN and the wall static pressure distributions were obtained by experiments,and the numerical results were used to enrich the thrust vectoring characteristics.The effects of the auxiliary injection were analyzed first to reveal the advantages of the high-efficiency SVCSN compared to the conventional SVCSN.Then,the aerodynamic parameters and the structural parameters of the high-efficiency SVCSN were investigated,including the Nozzle Pressure Ratio(NPR),the Secondary flow Pressure Ratio(SPR),the secondary flow relative area and the secondary flow injection angle.Finally,the coupling performance of the high-efficiency SVCSN is studied by using the approximate modeling technology.Results show that the auxiliary injection increases the range between the two shock legs of the “k”shock wave induced by the secondary flow,then causes the separation zone and high-pressure boss of the down wall to expand upstream,and finally results in a prominent increase in the thrust vectoring performance.The thrust vectoring angle and Vectoring Efficiency(VE)of the high-efficiency SVCSN are about 61.6%and 75.7%,respectively,higher than those of the conventional SVCSN at NPR=6.The effects of the NPR and the SPR on the thrust vectoring performance of the high-efficiency SVCSN are coupled with each other.A larger NPR matched with a smaller SPR shows better thrust vectoring performance.The maximum fluctuations in thrust vectoring angle and VE caused by the NPR and SPR are about 22%and 64%.The VE decreases monotonously with the increase of the secondary flow relative area.Smaller secondary flow injection angle shows better thrust vector performance,and the thrust vectoring angle and VE of the secondary flow injection angle of 90are about 20%higher than those of the secondary flow injection angle of 110at NPR=6.Therefore,the secondary flow relative area of 0.06 and the secondary flow injection angle of 90are recommended.
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金supported by the National Natural Science Foundation of China(Nos.11302012,51420105008,51476004,11572025 and 51136003)the National Basic Research Program of China(No.2012CB720205)The computational time for the present study was provided by the UK Turbulence Consortium(EPSRC grant EP/L000261/1)
文摘The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.
文摘A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
文摘In the present study, a numerical investigation is carried out on the aerodynamic performance of a supercritical airfoil RAE 2822. Transonic flow fields are considered where self-excited shock wave oscillation prevails. To control the shock oscillation, a passive technique in the form of an open rectangular cavity is introduced on the upper surface of the airfoil where the shock wave oscillates. Reynolds Averaged Navier-Stokes (RANS) equations have been used to predict the aerodynamic behavior of the baseline airfoil and airfoil with cavity at Mach number of 0.729 and at angle of attack of 5°. The aerodynamic characteristics of the baseline airfoil are well validated with the available experimental data. It is observed that the introduction of a cavity around the airfoil upper surface can completely stop the self-excited shock wave oscillation and successively improve the aerodynamic characteristics.
文摘Laptop personal computers(LPCs) and their components are vulnerable devices in harsh mechanical environments. One of the most sensitive components of LPCs is hard disk drive(HDD) which needs to be protected against damages attributable to shock and vibration in order to have better magnetic read/write performance. In the present work, a LPC and its HDD are modeled as two degrees of freedom system and the nonlinear optimization method is employed to perform a passive control through minimizing peak of HDD absolute acceleration caused by a base shock excitation. The presented shock excitation is considered as half-sine pulse of acceleration. In addition, eleven inequality constraints are defined based on geometrical limitations and allowable intervals of lumped modal parameters. The target of the optimization is to reach optimum modal parameters of rubber mounts and rubber feet as design variables and subsequently propose new characteristics of rubber mounts and rubber feet to be manufactured for the HDD protection against shock excitation. The genetic algorithm and the modified constrained steepest descent algorithm are employed in order to solve the nonlinear optimization problem for three widely-used commercial cases of HDD. Finally, the results of both optimization methods are compared to make sure about their accuracy.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51336011)the National Natural Science Foundationof China(Grant Nos.51207169 and 51276197)
文摘The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the inter- action. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3802303)the National Natural Science Foundation of China(Grant Nos.12302493 and 12525211).
文摘The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves.This work proposes a novel approach for actively controlling intense shock waves in solids,inspired by the principles of optical and explosive lenses.Specifically,by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix,we prove the feasibility of transforming a planar shock into a spherically converging shock.This is based on oblique shock theory,according to which shock waves pass through an oblique interface and then undergo deflection.Both experimental and simulation results demonstrate that,as expected,the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure.Thus,this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids.It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies.
基金Aeronautical Science Foundation of China (04B52012, 98B52023)
文摘To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.
基金supported by the National Natural Science Foundation of China (No. 11372356)
文摘Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier-Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction, The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagna- tion point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the inves- tigation of the mechanism of the interaction.
基金supported by the Scientific Research Project of Jieyang Vocational and Technical College(2017JYCKY01)the Innovation and Development Special Fund Project of Jieyang(2017xm014)
文摘The paper aims to analyze the impacts of punch damper stiffness on equipment base and vibration, andintroduce the development and application of a disc spring damper featured hard-soft-hard variable stiffness. Adamper has four damping columns with C-type disc springs whose laminates plate number gradually increases setby set. Compared with its counterparts, this kind of dampers has the advantages of high energy absorption andvibration damping effect, which not only can effectively reduce the vibration of the foundation of punch press,but also prevents the vibration range from increasing. Also, this kind of dampers is of low cost and convenient touse.
基金NKBRSF CG 1990 3 2 80 5 National Natural Science F oundation of China !( No.5 98760 0 2 )
文摘In order to prevent smearing the discontinuity, a modified term is added to the third order Upwind Compact Difference scheme to lower the dissipation error. Moreover, the dispersion error is controled to hold back the non physical oscillation by means of the group velocity control. The scheme is used to simulate the interactions of shock density stratified interface and the disturbed interface developing to vortex rollers. Numerical results are satisfactory.