期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Reynolds number and Schmidt number on variable density mixing in shock bubble interaction 被引量:1
1
作者 Bin Yu Linying Li +2 位作者 Hui Xu Bin Zhang Hong Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第6期26-38,I0001,共14页
Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosi... Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosity and diffusivity within a wide range,the controlling parameters,total vortex circulation,and compression rate,are conservative under a broad range of Re and Sc numbers(Re≈10^(3)-10^(5)and Sc≈0.1-5)in the same shock Mach(Ma)number condition(Ma=2.4).As for the Re number effect,the circulation of secondary baroclinic vorticity(SBV),induced by the main vortex centripetal acceleration,is observed to be higher in high Re number and vice versa.Based on the vorticity transport equation decomposition,a growth-inhibition vorticity dynamics balance mechanism is revealed:the vorticity viscous term grows synchronously with baroclinic production to inhibit SBV production in low Re number.By contrast,the viscous term terminates the baroclinic term with a time lag in high Re number,leading to the SBV production.Since the SBV reflects the local stretching enhancement based on the advection-diffusion equation,mixing is influenced by the Sc number in a different behavior if different Re numbers are considered.The time-averaged variable density mixing rate emerges a scaling law with Sc number asχ^(∗)=β·Sc^(−α),where the coefficientβ∼Re−0.2 and the scaling exponentα∼Re−0.385.The understanding of Re number and Sc number effect on variable density mixing provides an opportunity for mixing enhancement from the perspective of designing the viscosity and diffusivity of the fluid mixture. 展开更多
关键词 shock bubble interaction Variable density mixing Reynolds number effect Schmidt number effect Vortex dynamics
原文传递
Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers
2
作者 杨洁 万振华 +1 位作者 王伯福 孙德军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期66-69,共4页
The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both conside... The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases. 展开更多
关键词 Numerical Simulation of shock bubble interaction with Different Mach Numbers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部