Ships experience rolling motion under the action of sea waves and may even face the risk of capsizing.Anti-rolling devices are designed to reduce this motion and enhance vessel safety.This is especially critical for e...Ships experience rolling motion under the action of sea waves and may even face the risk of capsizing.Anti-rolling devices are designed to reduce this motion and enhance vessel safety.This is especially critical for engineering ships operating at sea under zero-speed conditions,where a stable posture is essential for efficient performance.Gyro stabilizers can suppress roll motion at zero speed;however,their high cost typically makes them unsuitable for large civilian vessels.Additionally,most existing anti-rolling devices rely on a certain water speed to function,which results in increased drag.In this study,an anti-rolling system incorporating swing control is proposed.Inspired by the human body's ability to maintain balance by swinging arms during walking or running,the system generates an antirolling moment by oscillating a water tank.This approach operates independently of water speed and does not generate additional drag.The mechanical design of the anti-rolling system is introduced,and a corresponding control system model is derived.The swing-tank mechanism provides phase lead compensation and reduces the system's sensitivity to wave disturbances.To enhance performance,robust control techniques are applied.Simulation results demonstrate that the proposed anti-rolling system delivers effective roll reduction for ships.展开更多
A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing p...A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller.展开更多
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the p...A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.展开更多
Motion state of ship out of control in bridge area was analyzed.Motion procedure after losing control was divided into two steps.One is drift step within stopping period.The other is drift step without inertia,which i...Motion state of ship out of control in bridge area was analyzed.Motion procedure after losing control was divided into two steps.One is drift step within stopping period.The other is drift step without inertia,which is induced by wind and current.Mathematical model for motion of ship out of control,considering wind-induced drift,current-induced drift,stopping ability,etc.,was established.Dangerous collision areas for main pier and auxiliary piers were analyzed according to different calculation conditions.展开更多
An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm...An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.展开更多
This paper proposes a novel nonlinear energy-based coupling control for an underactuated offshore ship-mounted crane,which guarantees both precise trolley positioning and payload swing suppressing performances under e...This paper proposes a novel nonlinear energy-based coupling control for an underactuated offshore ship-mounted crane,which guarantees both precise trolley positioning and payload swing suppressing performances under external sea wave disturbance. In addition to having such typical nonlinear underactuated property, as it is well known, an offshore ship-mounted crane also suffers from much unexpected persistent disturbances induced by sea waves or currents, which, essentially different from an overhead crane fixed on land, cause much difficulty in modeling and controller design. Inspired by the desire to achieve appropriate control performance against those challenging factors, in this paper, through carefully analyzing the inherent mechanism of the nonlinear dynamics, we first construct a new composite signal to enhance the coupling behavior of the trolley motion as well as the payload swing in the presence of ship′s roll motion disturbance. Based on which, an energy-based coupling control law is presented to achieve asymptotic stability of the crane control system′s equilibrium point. Without any linearization of the complex nonlinear dynamics, unlike traditional feedback controllers, the proposed control law takes a much simpler structure independent of the system parameters. To support the theoretical derivations and to further verify the actual control performance, Lyapunov-based mathematical analysis as well as numerical simulation/experimental results are carried out, which clarify the feasibility and superior performance of the proposed method over complicated disturbances.展开更多
A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes(RANS) b...A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes(RANS) based solver Rotorcraft AeroDynamics and Aeroacoustics Solver(RADAS), with combination of momentum source approach is employed to conduct the helicopter shipboard landing simulation. The control effects of three aerodynamic modifications of ship superstructure, i.e. ramp, notch and flap, in different Wind-Over-Deck(WOD) conditions are discussed.From the steady simulation results, the effect of spatial variation of ship airwake on rotor airloads is concluded. The aerodynamic modifications reduce the strength of shedding vortex and increase rotor normal force through delaying and relieving flow separation, and therefore are beneficial to alleviate the limitation of control inputs. By contrast, the perturbation of unsteady ship airwake can cause the serious oscillation of rotor forces during shipboard landing. The unsteady simulations show that the turbulence intensity of ship airwake and oscillatory rotor airloading, represented by Root-Mean-Square(RMS) loading, can be remarkably reduced by the ramp and notch modifications, while the flap modification has adverse effect. It means that flow control devices have large potential benefits to alleviate the pilot's workload and improve the shipboard landing safety, but they should be well designed to avoid the introduction of more vortex, which leads to increase in disturbance of flow field.展开更多
The drawbacks of common nonlinear Filtered-ε adaptive inverse control (AIC) method, such as the unreliability due to the change of delay time and the faultiness existing in its disturbance control loop, are discuss...The drawbacks of common nonlinear Filtered-ε adaptive inverse control (AIC) method, such as the unreliability due to the change of delay time and the faultiness existing in its disturbance control loop, are discussed. Based on it, the diagram of AIC is amended to accommodate with the characteristic of nonlinear object with time delay. The corresponding Filtered-ε adaptive algorithm based on RTRL is presented to identify the parameters and design the controller. The simulation results on a nonlinear ship model of "The R.O.V Zeefakker" show that compared with the previous scheme and adaptive PID control, the improved method not only keeps the same dynamic response performance, but also owns higher robustness and disturbance rejection ability, and it is suitable for the control of nonlinear objects which have higher requirement to the maneuverability under complex disturbance environment.展开更多
This paper presents an adaptive path following control law to steer underactuated ships along a predefined path at a constant forward speed with uncertain parameters due to changes of added mass matrices.The proposed ...This paper presents an adaptive path following control law to steer underactuated ships along a predefined path at a constant forward speed with uncertain parameters due to changes of added mass matrices.The proposed controller is based on analytic model predictive control and model reference adaptive control.The SerretFrenet frame is used to describe the ship dynamics.The analytic model predictive control provides a systematic method rather than try-and-error method to get appropriate control parameters to guarantee the stability of the closed-loop system,and the well-defined relative degree is guaranteed by introducing output-redefinition.An identification algorithm based on model reference adaptive control is used to identify the uncertain parameters.Numerical simulations are provided to demonstrate the validity of the proposed control law.展开更多
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three con...The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.展开更多
A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive contr...A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive control.It is shown that the optimal control law for a nonlinear path following system with ill-defined relative degree is continuous and nonsingular.The problem of ill-defined relative degree is solved.The path-following ability of the nonlinear system is guaranteed.Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.展开更多
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP sh...A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.展开更多
The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operatin...The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.展开更多
A mobile satellite communication system (MSCS) is a device installed on a moving carrier for mobile satellite communication. It can eliminate disturbance and maintain continuous satellite communication when the carrie...A mobile satellite communication system (MSCS) is a device installed on a moving carrier for mobile satellite communication. It can eliminate disturbance and maintain continuous satellite communication when the carrier is moving. Because of many advantages of mobile satellite communication, the MSCSs are becoming more and more popular in modern mobile communication. In this paper, a typical ship-mounted MSCS is studied. The dynamic model of the system is derived using the generalized Lagrange method both in the joint space and in the workspace. Based on the dynamic model, a nonlinear computed torque controller with trajectory planning is designed to track an aimed satellite with a satisfied transient response. Simulation results in two different situations are presented to show the tracking performance of the controller.展开更多
The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such acci...The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such accidents.But could such a system explain to the captain why it was controlling the ship in a certain way?展开更多
In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying dist...In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.展开更多
This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity ...This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.展开更多
基金supported by the Jiangxi University of Water Resources and Electric Power Doctoral Research Initiation Fund(Grant No.2024kyqd030)。
文摘Ships experience rolling motion under the action of sea waves and may even face the risk of capsizing.Anti-rolling devices are designed to reduce this motion and enhance vessel safety.This is especially critical for engineering ships operating at sea under zero-speed conditions,where a stable posture is essential for efficient performance.Gyro stabilizers can suppress roll motion at zero speed;however,their high cost typically makes them unsuitable for large civilian vessels.Additionally,most existing anti-rolling devices rely on a certain water speed to function,which results in increased drag.In this study,an anti-rolling system incorporating swing control is proposed.Inspired by the human body's ability to maintain balance by swinging arms during walking or running,the system generates an antirolling moment by oscillating a water tank.This approach operates independently of water speed and does not generate additional drag.The mechanical design of the anti-rolling system is introduced,and a corresponding control system model is derived.The swing-tank mechanism provides phase lead compensation and reduces the system's sensitivity to wave disturbances.To enhance performance,robust control techniques are applied.Simulation results demonstrate that the proposed anti-rolling system delivers effective roll reduction for ships.
基金supported by Polish Ministry of Science and Higher Education (No. N514 015 32/1712)
文摘A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller.
基金the National Natural Science Foundation ofChina (60974136)
文摘A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.
基金Supported by Disaster Reduction Foundation of Large Complex Project for Sutong Bridge(No.2006BAG04B06)
文摘Motion state of ship out of control in bridge area was analyzed.Motion procedure after losing control was divided into two steps.One is drift step within stopping period.The other is drift step without inertia,which is induced by wind and current.Mathematical model for motion of ship out of control,considering wind-induced drift,current-induced drift,stopping ability,etc.,was established.Dangerous collision areas for main pier and auxiliary piers were analyzed according to different calculation conditions.
文摘An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm.
基金supported by National Natural Science Foundation of China (No. 11372144)National Science Fund for Distinguished Young Scholars of China (No. 61325017)National Science Foundation of Tianjin
文摘This paper proposes a novel nonlinear energy-based coupling control for an underactuated offshore ship-mounted crane,which guarantees both precise trolley positioning and payload swing suppressing performances under external sea wave disturbance. In addition to having such typical nonlinear underactuated property, as it is well known, an offshore ship-mounted crane also suffers from much unexpected persistent disturbances induced by sea waves or currents, which, essentially different from an overhead crane fixed on land, cause much difficulty in modeling and controller design. Inspired by the desire to achieve appropriate control performance against those challenging factors, in this paper, through carefully analyzing the inherent mechanism of the nonlinear dynamics, we first construct a new composite signal to enhance the coupling behavior of the trolley motion as well as the payload swing in the presence of ship′s roll motion disturbance. Based on which, an energy-based coupling control law is presented to achieve asymptotic stability of the crane control system′s equilibrium point. Without any linearization of the complex nonlinear dynamics, unlike traditional feedback controllers, the proposed control law takes a much simpler structure independent of the system parameters. To support the theoretical derivations and to further verify the actual control performance, Lyapunov-based mathematical analysis as well as numerical simulation/experimental results are carried out, which clarify the feasibility and superior performance of the proposed method over complicated disturbances.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2018007)
文摘A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes(RANS) based solver Rotorcraft AeroDynamics and Aeroacoustics Solver(RADAS), with combination of momentum source approach is employed to conduct the helicopter shipboard landing simulation. The control effects of three aerodynamic modifications of ship superstructure, i.e. ramp, notch and flap, in different Wind-Over-Deck(WOD) conditions are discussed.From the steady simulation results, the effect of spatial variation of ship airwake on rotor airloads is concluded. The aerodynamic modifications reduce the strength of shedding vortex and increase rotor normal force through delaying and relieving flow separation, and therefore are beneficial to alleviate the limitation of control inputs. By contrast, the perturbation of unsteady ship airwake can cause the serious oscillation of rotor forces during shipboard landing. The unsteady simulations show that the turbulence intensity of ship airwake and oscillatory rotor airloading, represented by Root-Mean-Square(RMS) loading, can be remarkably reduced by the ramp and notch modifications, while the flap modification has adverse effect. It means that flow control devices have large potential benefits to alleviate the pilot's workload and improve the shipboard landing safety, but they should be well designed to avoid the introduction of more vortex, which leads to increase in disturbance of flow field.
基金This project was supported by the National Defence Pre-research Foundation of Shipbuilding Industry (01J1.50) and theWeapon & Equipment Pre-research Foundation of General Armament Department (51414030204JW0322).
文摘The drawbacks of common nonlinear Filtered-ε adaptive inverse control (AIC) method, such as the unreliability due to the change of delay time and the faultiness existing in its disturbance control loop, are discussed. Based on it, the diagram of AIC is amended to accommodate with the characteristic of nonlinear object with time delay. The corresponding Filtered-ε adaptive algorithm based on RTRL is presented to identify the parameters and design the controller. The simulation results on a nonlinear ship model of "The R.O.V Zeefakker" show that compared with the previous scheme and adaptive PID control, the improved method not only keeps the same dynamic response performance, but also owns higher robustness and disturbance rejection ability, and it is suitable for the control of nonlinear objects which have higher requirement to the maneuverability under complex disturbance environment.
基金the National Natural Science Foundation of China (No. 50779033)the National High Technology Research and Development Program (863) of China (No. 2007AA11Z250)
文摘This paper presents an adaptive path following control law to steer underactuated ships along a predefined path at a constant forward speed with uncertain parameters due to changes of added mass matrices.The proposed controller is based on analytic model predictive control and model reference adaptive control.The SerretFrenet frame is used to describe the ship dynamics.The analytic model predictive control provides a systematic method rather than try-and-error method to get appropriate control parameters to guarantee the stability of the closed-loop system,and the well-defined relative degree is guaranteed by introducing output-redefinition.An identification algorithm based on model reference adaptive control is used to identify the uncertain parameters.Numerical simulations are provided to demonstrate the validity of the proposed control law.
文摘The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
基金supported by the National Natural Science Foundation of China(No.50779033)the National High Technology Research and Development Program(863 Program)of China(No.2007AA11Z250)
文摘A path following controller is developed for underactuated ships with only surge force and yaw moment available to follow a predefined path.The proposed controller is based on nonswitch analytic model predictive control.It is shown that the optimal control law for a nonlinear path following system with ill-defined relative degree is continuous and nonsingular.The problem of ill-defined relative degree is solved.The path-following ability of the nonlinear system is guaranteed.Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.
基金the National Natural Science Foundation of China(No.51579114)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)the Project of Young and Middle-Aged Teacher Education of Fujian Province(No.JAT170309)
文摘A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.
文摘The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.
基金supported by National Natural Science Foundation of China (Nos. 61074023 and 60975075)Natural Science Foundation of Jiangsu Province of China (No. BK2008404)+1 种基金Science and Technology Pillar Program of Jiangsu Province of China (No. BE2009160)Innovation Project of Graduate Students of Jiangsu Province of China (No. CXZZ 0254)
文摘A mobile satellite communication system (MSCS) is a device installed on a moving carrier for mobile satellite communication. It can eliminate disturbance and maintain continuous satellite communication when the carrier is moving. Because of many advantages of mobile satellite communication, the MSCSs are becoming more and more popular in modern mobile communication. In this paper, a typical ship-mounted MSCS is studied. The dynamic model of the system is derived using the generalized Lagrange method both in the joint space and in the workspace. Based on the dynamic model, a nonlinear computed torque controller with trajectory planning is designed to track an aimed satellite with a satisfied transient response. Simulation results in two different situations are presented to show the tracking performance of the controller.
文摘The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such accidents.But could such a system explain to the captain why it was controlling the ship in a certain way?
基金National Natural Science Foundations of China(Nos.51579026,51079013)Program for Excellent Talents in Universities of Liaoning Province,China(No.LR2015007)+1 种基金Project of Resource and Social Security of Ministry of Human Province,ChinaFundamental Research Funds for the Central Universities,China(No.3132016020)
文摘In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.
基金supported in part by the National Natural Science Foundation of China (No. 61751210)the Jiangsu Natural Science Foundation of China (No. BK20171417)the Fundamental Research Funds for the Central Universities(No. NG2019002)
文摘This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.