We demonstrate that the sliding motion between two layers of the newly discovered ferroelectric and topologically trivial bismuth(Bi)monolayer[Nature 61767(2023)]can induce a sequence of topological phase transitions,...We demonstrate that the sliding motion between two layers of the newly discovered ferroelectric and topologically trivial bismuth(Bi)monolayer[Nature 61767(2023)]can induce a sequence of topological phase transitions,alternating between Z_(2)trivial and nontrivial states.The lateral shift,while preserving spatial symmetry,can switch the quantum spin Hall state on and of.The sliding-induced changes in out-of-plane atomic buckling,which are directly coupled to in-plane ferroelectricity,are shown to signifcantly modulate the band gap and drive the topological phase transitions.We map out the topological phase diagram and in-plane ferroelectricity with respect to sliding displacements.With appropriate sliding,the bismuth bilayer can transition into a nontrivial polar metal,exhibiting a pronounced shift current response arising from interband geometric quantities of electronic bands.Moreover,bilayer Bi supports a sliding-tunable nonlinear anomalous Hall response resulting from the geometric Berry curvature dipole.Confgurations that are Z_(2)nontrivial can generate drastically different transverse currents orthogonal to the external electric feld,as both the direction and magnitude of the Berry curvature dipole at the Fermi level are highly sensitive to the sliding displacement.Our results suggest that bilayer bismuth,with its ability to generate multiple types of geometric currents,ofers a versatile platform for power-efcient“Berry slidetronics”for multistate memory applications integrating both band topology and ferroelectricity.展开更多
基金the supports from Westlake Education Foundationthe support provided by the National Natural Science Foundation of China(Grant No.12304049)。
文摘We demonstrate that the sliding motion between two layers of the newly discovered ferroelectric and topologically trivial bismuth(Bi)monolayer[Nature 61767(2023)]can induce a sequence of topological phase transitions,alternating between Z_(2)trivial and nontrivial states.The lateral shift,while preserving spatial symmetry,can switch the quantum spin Hall state on and of.The sliding-induced changes in out-of-plane atomic buckling,which are directly coupled to in-plane ferroelectricity,are shown to signifcantly modulate the band gap and drive the topological phase transitions.We map out the topological phase diagram and in-plane ferroelectricity with respect to sliding displacements.With appropriate sliding,the bismuth bilayer can transition into a nontrivial polar metal,exhibiting a pronounced shift current response arising from interband geometric quantities of electronic bands.Moreover,bilayer Bi supports a sliding-tunable nonlinear anomalous Hall response resulting from the geometric Berry curvature dipole.Confgurations that are Z_(2)nontrivial can generate drastically different transverse currents orthogonal to the external electric feld,as both the direction and magnitude of the Berry curvature dipole at the Fermi level are highly sensitive to the sliding displacement.Our results suggest that bilayer bismuth,with its ability to generate multiple types of geometric currents,ofers a versatile platform for power-efcient“Berry slidetronics”for multistate memory applications integrating both band topology and ferroelectricity.