Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in d...Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.展开更多
A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative recons...A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction(IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo(MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization(OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast,and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration.展开更多
A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended ...A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended from 45 mm to 70 mm in diameter. The position dependence of the variances of PSF is presented, and theacceptance for the 140 kev gamma rays is explored. A phantom of 70 mm in diameter was experimentally imaged inthe camera with effective FOV of only 45 mm in diameter.展开更多
Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocu...Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocus in BSAR should be considered along iso-range direction, not the traditional azimuth resolution (AR) direction. The conclusion is verified by the computer simulation.展开更多
In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife...In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife-edge input PSF estimation method is chosen will be explained. Then in the next section, the knife-edge input PSF estimation method will be detailed. After that, a simulation experiment is performed in order to verify the implemented PSF estimation method. Based on the simulation experiment, in next section we propose a procedure that makes automatic PSF estimation possible. A real document image is firstly taken as an example to illustrate the procedure and then be restored with the estimated PSF and Lucy-Richardson deconvolution method, and its OCR accuracy before and after deconvolution will be compared. Finally, we conclude the paper with the outlook for the future work.展开更多
Point spread function(PSF)engineering has been pivotal in the remarkable progress made in high-resolution imaging in the last decades.However,the diversity in PSF structures attainable through existing engineering met...Point spread function(PSF)engineering has been pivotal in the remarkable progress made in high-resolution imaging in the last decades.However,the diversity in PSF structures attainable through existing engineering methods is limited.Here,we report universal PSF engineering,demonstrating a method to synthesize an arbitrary set of spatially varying 3D PSFs between the input and output volumes of a spatially incoherent diffractive processor composed of cascaded transmissive surfaces.We rigorously analyze the PSF engineering capabilities of such diffractive processors within the diffraction limit of light and provide numerical demonstrations of unique imaging capabilities,such as snapshot 3D multispectral imaging without involving any spectral filters,axial scanning or digital reconstruction steps,which is enabled by the spatial and spectral engineering of 3D PSFs.Our framework and analysis would be important for future advancements in computational imaging,sensing,and diffractive processing of 3D optical information.展开更多
基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提...基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提出基于函数波束形成的改进FFT-FISTA算法。改进算法以函数波束形成输出作为FFT-FISTA算法的迭代输入,建立函数波束形成、声源分布及升幂空间转移不变点扩散函数的线性方程组,基于周期边界条件下的快速傅里叶变换进行迭代求解,使被运算的非周期函数变为一个周期函数,解决补零边界带来的波数泄漏问题,可提高运算准确性,进一步提升成像性能;通过指数运算锐化点扩散函数主瓣,拓展点扩散函数空间转移不变性假设的适用性。仿真和试验结果表明,相较于常规FFT-FISTA算法,改进算法能提升成像空间分辨率及动态范围,扩大FFT-FISTA算法的有效成像区域,压缩气体泄漏试验结果验证了改进算法的有效性。展开更多
AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YJKYYQ20190044)the National Key Research and Development Program of China (Grant No.2022YFB3903100)+1 种基金the High-level introduction of talent research start-up fund of Hefei Normal University in 2020 (Grant No.2020rcjj34)the HFIPS Director’s Fund (Grant No.YZJJ2022QN12).
文摘Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.Y4811H805C and 81101175)
文摘A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction(IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo(MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization(OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast,and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration.
基金Supported by the National Natural Science Foundation of China(10275063)
文摘A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended from 45 mm to 70 mm in diameter. The position dependence of the variances of PSF is presented, and theacceptance for the 140 kev gamma rays is explored. A phantom of 70 mm in diameter was experimentally imaged inthe camera with effective FOV of only 45 mm in diameter.
文摘Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocus in BSAR should be considered along iso-range direction, not the traditional azimuth resolution (AR) direction. The conclusion is verified by the computer simulation.
文摘In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife-edge input PSF estimation method is chosen will be explained. Then in the next section, the knife-edge input PSF estimation method will be detailed. After that, a simulation experiment is performed in order to verify the implemented PSF estimation method. Based on the simulation experiment, in next section we propose a procedure that makes automatic PSF estimation possible. A real document image is firstly taken as an example to illustrate the procedure and then be restored with the estimated PSF and Lucy-Richardson deconvolution method, and its OCR accuracy before and after deconvolution will be compared. Finally, we conclude the paper with the outlook for the future work.
文摘Point spread function(PSF)engineering has been pivotal in the remarkable progress made in high-resolution imaging in the last decades.However,the diversity in PSF structures attainable through existing engineering methods is limited.Here,we report universal PSF engineering,demonstrating a method to synthesize an arbitrary set of spatially varying 3D PSFs between the input and output volumes of a spatially incoherent diffractive processor composed of cascaded transmissive surfaces.We rigorously analyze the PSF engineering capabilities of such diffractive processors within the diffraction limit of light and provide numerical demonstrations of unique imaging capabilities,such as snapshot 3D multispectral imaging without involving any spectral filters,axial scanning or digital reconstruction steps,which is enabled by the spatial and spectral engineering of 3D PSFs.Our framework and analysis would be important for future advancements in computational imaging,sensing,and diffractive processing of 3D optical information.
文摘基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提出基于函数波束形成的改进FFT-FISTA算法。改进算法以函数波束形成输出作为FFT-FISTA算法的迭代输入,建立函数波束形成、声源分布及升幂空间转移不变点扩散函数的线性方程组,基于周期边界条件下的快速傅里叶变换进行迭代求解,使被运算的非周期函数变为一个周期函数,解决补零边界带来的波数泄漏问题,可提高运算准确性,进一步提升成像性能;通过指数运算锐化点扩散函数主瓣,拓展点扩散函数空间转移不变性假设的适用性。仿真和试验结果表明,相较于常规FFT-FISTA算法,改进算法能提升成像空间分辨率及动态范围,扩大FFT-FISTA算法的有效成像区域,压缩气体泄漏试验结果验证了改进算法的有效性。
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.