Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme...Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.12534013,12035002,12047561,and 12104507as well as the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026+1 种基金T.Sekine gratefully acknowledges financial support from the Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments,China(Grant No.22dz2260800)from the Shanghai Science and Technology Committee,China(Grant No.22JC1410300).
文摘Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.