期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Numerical study on the failure characteristics and reinforcement effects of shield segmental linings subjected to localized overload
1
作者 Long ZHOU Zhiguo YAN Mengqi ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期950-966,共17页
When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing st... When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings. 展开更多
关键词 shield segmental lining Localized overload Failure characteristics Steel ring reinforcement
原文传递
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation 被引量:2
2
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 shield tunnel segment Full-scale test Asymmetric unloading Stress and deformation Safety index
在线阅读 下载PDF
Analyzing the strengthening effect of steel-ultra high performance concrete composite on segmental linings
3
作者 Renpeng CHEN Meng FAN +4 位作者 Hongzhan CHENG Huaina WU Yang ZHANG Bingyong GAO Shiqiang RUAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第6期558-572,共15页
This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a no... This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a novel way,using cross-sectional strains at ultimate states as well as real-time stress measurements for each material.The enclosed area of the N-M curve was defined as a comprehensive performance index for the system.We validate our approach with comparisons to numerical modeling and full-scale four-point bending experiments.Additionally,strengthening effects were compared for different sagging and hogging moments based on material stress responses,and the impact of various strengthening parameters was analyzed.We find that the N-M curve of the strengthened cross-section envelops that of the un-strengthened cross-section.Notably,improvements in flexural capacity are greater under sagging moments during the large eccentric failure stage,and greater under hogging moments during the small eccentric failure stage.This discrepancy is attributed to the strength utilization of strengthening materials.These findings provide a reference for understanding the strengthening effects and parameters of steel-UHPC composite. 展开更多
关键词 Strengthening effects Steel-ultra high performance concrete(UHPC)composite Axial force-moment interaction curve shield segmental linings
原文传递
Research on the Influence of Steam Curing on Properties of C50 Shield Segment Concrete 被引量:1
4
作者 LI J H 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期137-140,共4页
The effects of steam curing on mechanical properties,drying shrinkage,cracking sensitivity,anti-permeability,and carbonation resistance of C50 shield segment concrete were investigated,which were compared with the sta... The effects of steam curing on mechanical properties,drying shrinkage,cracking sensitivity,anti-permeability,and carbonation resistance of C50 shield segment concrete were investigated,which were compared with the standard curing conditions. The results indicated that steam curing could increase early strength of concrete and reduce its drying shrinkage. However,steam curing reduced later strength of concrete,increased its crack sensitivity and deteriorated its anti-permeability and carbonation resistance. Moreover,the incorporation of fly ash could improve the durability of steam-cured concrete. 展开更多
关键词 shield segment CONCRETE steam curing PROPERTIES INFLUENCE
原文传递
Finite Element Analysis of Shrinkage in the Interface of Functionally Graded Concrete Segment Used in Shield Tunneling
5
作者 高英力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期94-98,共5页
In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element... In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate. 展开更多
关键词 shield segment functionally graded concrete SHRINKAGE finite element analysis INTERFACE
在线阅读 下载PDF
Energy saving analysis of segment positioning in shield tunneling machine considering assembling path optimization 被引量:4
6
作者 施虎 龚国芳 +1 位作者 杨华勇 梅雪松 《Journal of Central South University》 SCIE EI CAS 2014年第12期4526-4536,共11页
A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro... A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine. 展开更多
关键词 energy saving segment erector work of gravity path optimization shield tunneling machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部