The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analys...The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analysis 51(9):4497-4509]in simple random sampling(SRS).As an alternative to the MLEs in SRS,Joukar et al.[2021.Parameter estimation for the exponential-poisson distribution based on ranked set samples.Communication in Statistics-Theory and Methods 50(3):560-581]discussed the MLE of parameter for this distribution in ranked set sampling(RSS).However,they did not discuss the existence and uniqueness of the MLE in RSS and did not provide explicit expressions for the Fisher information in RSS.In this article,we discuss the existence and uniqueness of the MLE of parameter in RSS and give explicit expressions for the Fisher information in RSS.The MLEs will be compared in terms of asymptotic efficiencies.Numerical studies and a real data application show that these MLEs in RSS can be real competitors for those in SRS.展开更多
In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along...In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.展开更多
基金Supported by the National Natural Science Foundation of China(11901236,12261036)Scientific Research Fund of Hunan Provincial Education Department(21A0328)Young Core Teacher Foundation of Hunan Province([2020]43).
文摘The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analysis 51(9):4497-4509]in simple random sampling(SRS).As an alternative to the MLEs in SRS,Joukar et al.[2021.Parameter estimation for the exponential-poisson distribution based on ranked set samples.Communication in Statistics-Theory and Methods 50(3):560-581]discussed the MLE of parameter for this distribution in ranked set sampling(RSS).However,they did not discuss the existence and uniqueness of the MLE in RSS and did not provide explicit expressions for the Fisher information in RSS.In this article,we discuss the existence and uniqueness of the MLE of parameter in RSS and give explicit expressions for the Fisher information in RSS.The MLEs will be compared in terms of asymptotic efficiencies.Numerical studies and a real data application show that these MLEs in RSS can be real competitors for those in SRS.
文摘In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.