期刊文献+
共找到20,282篇文章
< 1 2 250 >
每页显示 20 50 100
Bulging Performance and Quality Control of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Friction
1
作者 GAO Tiejun GAO Bowen +1 位作者 LI Weijie ZHANG Jiabin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期258-264,共7页
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s... In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal. 展开更多
关键词 tailor-welded sheets overlapping sheet BULGING interface friction weld seam stress
原文传递
Annealing temperature influence on forming limit curve and fracture toughness of aluminium/silver bilayer sheets 被引量:1
2
作者 Mohammad Delshad GHOLAMI Mojtaba KHODAKARAMI +1 位作者 Mohammad ABADIAN Ramin HASHEMI 《Journal of Central South University》 2025年第1期34-48,共15页
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre... This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities. 展开更多
关键词 cold roll bonding Ag/Al bilayer sheet mechanical properties forming limit curve fracture toughness
在线阅读 下载PDF
An embedded electron current layer observed at the edge of the plasma sheet in the Earth’s magnetotail
3
作者 ChenChen Zhan RongSheng Wang +2 位作者 QuanMing Lu San Lu XinMin Li 《Earth and Planetary Physics》 EI CAS 2025年第1期148-158,共11页
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh... The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection. 展开更多
关键词 MAGNETOTAIL plasma sheet magnetic reconnection
在线阅读 下载PDF
Multiple impacts of trace Tb addition on the secondary recrystallization andmagnetostriction of Fe–Ga thin sheet
4
作者 Jiande Liu Zhenghua He +4 位作者 Yuhui Sha Xiaofei Zhu Hongbo Hao Lijia Chen Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期902-914,共13页
Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ... Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ductility of Fe–Ga alloy. However, the im-pact of trace Tb doping on the microstructure and magnetostriction of Fe–Ga thin sheets is an open question. In this paper, the effects oftrace Tb addition on the secondary recrystallization and magnetostriction of Fe–Ga thin sheets are systematically studied by comparing thecharacteristics evolution of precipitation, texture, and nanoinclusions. The results indicate that trace Tb addition accelerates the secondaryrecrystallization of Goss texture due to the combined action of the bimodal size distributed precipitates, smaller grains, and more HEGBsin primary recrystallization. After quenching at 900℃, the magnetostriction value in 0.07 at %Tb-doped Fe_(81)Ga_(19) thin sheets increases by 30% to that of Fe_(81)Ga_(19) thin sheets. The increase in magnetostriction is attributed to the decrease in the number of Tb-rich precipitates andthe higher density of the nanometer-sized modified-D0_(3) inclusions induced by the dissolving of trace Tb elements after quenching. Theseresults demonstrate a simple and efficient approach for preparing Fe–Ga thin sheets with a large magnetostrictive coefficient by a combin-ation of trace RE element addition and conventional rolling method. 展开更多
关键词 magnetostriction alloy thin sheets RE dopant secondary recrystallization precipitate phase nanoheterogeneity.
在线阅读 下载PDF
A Study on the Risks Associated with On-Balance Sheet Recognition of Data Resources
5
作者 Xia Xiao 《Proceedings of Business and Economic Studies》 2025年第5期169-176,共8页
This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cy... This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cybersecurity,and cross-border data flows create additional compliance challenges.In terms of recognition,the subjectivity of traditional valuation methods,the lack of active markets,and the rapid depreciation of data value caused by technological iteration hinder reliable measurement.With respect to disclosure,organizations face a dilemma between transparency and confidentiality.Collectively,these issues exacerbate audit risks.It is therefore imperative to establish an appropriate legal,accounting,and auditing framework to mitigate such risks and remove barriers to the proper recognition of data assets on balance sheets. 展开更多
关键词 Data resources On-balance sheet recognition Valuation uncertainty Information disclosure RISK
在线阅读 下载PDF
Comparison of edge crack behavior of Mg-3Al-1Zn sheets rolled from as-cast,as-rolled and as-extruded alloys
6
作者 Qiu-yan SHEN Shang-yi ZHANG +4 位作者 Qiang LIU Jiang-feng SONG Dong-xia XIANG Bin JIANG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2025年第3期788-799,共12页
Edge cracking is one of the most serious problems in the rolling process of magnesium alloy sheets,which limits its application.In this work,the edge cracking behavior of different initial AZ31 alloy sheets,including ... Edge cracking is one of the most serious problems in the rolling process of magnesium alloy sheets,which limits its application.In this work,the edge cracking behavior of different initial AZ31 alloy sheets,including as-cast(AC),as-rolled(AR)and as-extruded(AE),was systematically investigated and compared under the online heating rolling(O-LHR)process with a single-pass reduction of 50% at 250℃.The results show that both AC and AR sheets exhibit severe edge cracking behavior after the O-LHR.Among them,the AR sheet exhibits the severest edge cracking behavior on the rolling plane(RD-TD)and longitudinal section(RD-ND),which is attributed to the strong basal texture and extremely uneven microstructure with shear bands.While no visible edge crack appears in the AE rolled sheet,which is mainly related to the tilted texture and the more dynamic recrystallization during rolling process.Moreover,it is also found that the micro-cracks of the AC rolled sheet are mainly generated in the local fine-grained area and the twins where recrystallization occurs.In the AR rolled sheet,micro-cracks mainly develop inside the shear bands.Meanwhile,the micro-crack initiation mechanism of AC and AR rolled sheets was also discussed. 展开更多
关键词 AZ31 sheet edge crack behavior initial state texture microstructure
在线阅读 下载PDF
Abnormal texture and sensitivity to strain rate during hot-tension of Mg alloy sheets
7
作者 ZHANG Hong-yang NIE Hui-hui +1 位作者 XU Xiong LIANG Wei 《Journal of Central South University》 2025年第3期991-1007,共17页
The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.... The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component. 展开更多
关键词 Mg alloy sheet hot deformation TWINNING abnormal texture strain rate
在线阅读 下载PDF
Light-sheet dynamic scattering imaging of microscopic blood flow
8
作者 Kai Long Keertana Vinod Ram +4 位作者 Shuhao Shen E Du Ziheng Ren Zhiyuan Gong Nanguang Chen 《Advanced Photonics Nexus》 2025年第1期9-19,共11页
Microcirculation imaging is crucial in understanding the function and health of various tissues and organs.However,conventional imaging methods suffer from fluorescence label dependency,lack of depth resolution,and qu... Microcirculation imaging is crucial in understanding the function and health of various tissues and organs.However,conventional imaging methods suffer from fluorescence label dependency,lack of depth resolution,and quantification inaccuracy.Here,we report a light-sheet dynamic light-scattering imaging(LSHDSI)system to overcome these shortcomings.LSH-DSI utilizes selected plane illumination for an optical sectioning,while a time-frequency analysis method retrieves blood flow velocity estimates from dynamic changes in the detected light intensity.We have performed imaging experiments with zebrafish embryos to obtain angiographs from the trunk and head regions.The results show that LSH-DSI can capture label-free tomographic images of microvasculature and three-dimensional quantitative maps of local blood flow velocities. 展开更多
关键词 light sheet laser speckle imaging flow quantitative map tomographic imaging.
在线阅读 下载PDF
Dynamic Response and Failure Analysis of Steel Sheet Pile Support Structures in Bank Slopes under Pile Driving Impact Loads
9
作者 Ling Ji Nan Jiang +3 位作者 Yingbo Ren Tao Yin Haibo Wang Bing Cheng 《Computer Modeling in Engineering & Sciences》 2025年第7期267-288,共22页
During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile str... During the construction of bank slopes involving pile driving,ensuring slope stability is crucial.This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile structures under dynamic loading conditions.Based on the Huarong Coal Wharf project,various support schemes are analyzed using numerical simulation methods to calculate and compare slope stability coefficients.The optimal scheme is then identified.Under the selected support scheme,a numerical model of double-row suspended steel sheet piles is developed to investigate the dynamic response of the pile structures under pile driving loads.A time-history analysis is performed to assess the slope’s dynamic stability.The results show that the maximum displacements of the upper and lower steel sheet pile rows are 2.51 and 3.14 cm,respectively.The maximum principal stresses remain below 20 MPa in both rows,while the maximum von Mises stresses are 20.85 MPa for the upper row and 25.40 MPa for the lower row.The dominant frequencies of the steel sheet pile structures fall between 30 and 35 Hz,with a frequency bandwidth ranging from 0 to 500 Hz.The stability coefficient of the pile structures varies over time during the pile driving process,ultimately reaching a value of 1.26—exceeding the required safety threshold.This research provides practical guidance for designing support systems in wharf piling projects and offers a reliable basis for evaluating the safety performance of steel sheet piles in bank slopes. 展开更多
关键词 Bank slope steel sheet pile dynamic response failure analysis safety assessment
在线阅读 下载PDF
Creep properties and fracture behavior of AZ31B extruded sheets with mixed-grain microstructures of different morphologies
10
作者 Xiaoxia Zhang Ming Li +6 位作者 Hongxia Wang Jiao Cui Lei Song Naidong Ren Lifei Wang Weili Cheng Kwangseon Shin 《Journal of Magnesium and Alloys》 2025年第2期777-791,共15页
In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referr... In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referred to as M1 and M2 samples,respectively).The creep tests were performed on these samples at the temperature range of 150-200℃,and the stress level range of 50-100 MPa.The creep properties and fracture behavior of AZ31 extruded sheets with mixed-grain microstructures were studied.Results showed that the creep properties of the M2 sample always outperformed that of the M1 sample and M1 and M2 samples’creep was dominated by dislocation movement.The creep rate of M2 samples(1.5×10^(-7)±1.1×10^(-10) s^(-1))is an order of magnitude lower than that of M1 samples(4.8×10^(-6)±8.1×10^(-10) s^(-1))at 200℃under 50 MPa The high activity of basal slip and softening mechanism in the M1 sample significantly accelerated creep,resulting in a relatively high creep rate.Moreover,the stress concentration within the M1 sample caused by deformation incompatibility,increased the initiation and propagation of voids,ultimately leading to fracture and poorer creep performance.However,the numerous<10µm fine grains surrounding deformed coarse grains in the M2 sample facilitated better coordination of deformation through dislocation slip,effectively slowing down the initiation of voids during the creep process.Meanwhile,the strain was uniformly distributed within each grain,mitigating stress concentration,inhibiting voids propagation,and contributing to the superior creep resistance of the M2 sample. 展开更多
关键词 AZ31B extruded sheets Mixed-grain microstructure Creep properties Fracture behavior
在线阅读 下载PDF
Influence of geometric configurations on friction characteristics during incremental forming process of AA5052 sheet metal
11
作者 Guang-can YANG Da-wei ZHANG +1 位作者 Chong TIAN Sheng-dun ZHAO 《Transactions of Nonferrous Metals Society of China》 2025年第3期715-733,共19页
The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic s... The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction. 展开更多
关键词 AA5052 sheet metal incremental forming process geometric configurations surface morphology characteristics friction mechanism
在线阅读 下载PDF
Optimal good manufacturing practice-compliant production of dental follicle stem cell sheet and its application in Sprague-Dawley rat periodontitis
12
作者 Jia-Lu Yu Chao Yang +3 位作者 Li Liu An Lin Shu-Juan Guo Wei-Dong Tian 《World Journal of Stem Cells》 2025年第5期93-115,共23页
BACKGROUND Dental follicle stem cell(DFSC)sheets demonstrate strong extracellular secretion capabilities and efficacy in periodontal regeneration.However,existing methods for producing DFSC sheets lack a comprehensive... BACKGROUND Dental follicle stem cell(DFSC)sheets demonstrate strong extracellular secretion capabilities and efficacy in periodontal regeneration.However,existing methods for producing DFSC sheets lack a comprehensive discussion on the most efficient and cost-effective approaches at the good manufacturing practice(GMP)level.AIM To investigate the culture condition of GMP-compliant DFSC sheets and to compare the properties of DFSC sheets and cell suspensions.METHODS This study explored the optimal conditions for culturing GMP-compliant DFSC sheets,focusing on four key factors:Cell passage,cell concentration,L-ascorbic acid content,and culture duration.We evaluated the characteristics of the cell sheets under varying culture conditions,including cell viability,cell count,appearance,osteogenesis,chondrogenesis,odontogenesis,aging,relative telomere length,and extracellular matrix secretion.A comparison was also made between the periodontal regeneration,osteogenesis,and paracrine capacity of cell sheets cultured under optimal conditions and those of the cell suspensions.RESULTS The GMP-compliant DFSC sheets cultured from passage 4 cells exhibited the highest viability(≥99%,P<0.05)and optimal osteogenic differentiation capacity(optical density≥0.126,P<0.05).When cultured for 10 days,DFSC sheets demonstrated maximal expression of osteogenic,chondrogenic and periostin genes[alkaline phosphatase,Runt-related transcription factor 2,collagen type I,osteopontin,cartilage associated protein,and PERIOSTN(P<0.001);osteocalcin(P<0.01)].Concurrently,they showed the lowest senescent cell count(P<0.01)with no progression to late-stage senescence.At a seeding density of 2500 cells/cm^(2),GMP-compliant DFSC sheets achieved better osteogenic differentiation(P<0.01)and maximal osteogenic,chondrogenic and periostin gene expression(P<0.001),coupled with the highest hydroxyproline secretion(P<0.001)and moderate sulfated glycosaminoglycan production.No statistically significant difference in senescent cell count was observed compared to DFSC sheets at a seeding density of 5000 cells/cm^(2).Supplementation with 25μg/mL L-ascorbic acid significantly enhanced osteogenic gene expression(P<0.001)and elevated hydroxyproline(P<0.01)and sulfated glycosaminoglycan secretion to high ranges.Compared with the cell suspension,the cell sheet demonstrated improved osteogenic,paracrine,and periodontal regenerative capacities in Sprague-Dawley rats.The optimized DFSC sheets demonstrated significantly higher levels of vascular endothelial growth factor and angiopoietin-1(P<0.001)compared to DFSC suspensions,along with enhanced osteogenic induction outcomes(optical density=0.1333±0.01270 vs 0.1007±0.0005774 in suspensions,P<0.05).Following implantation into the rat periodontal defect model,micro-computed tomography analysis revealed superior bone regeneration metrics in the cell sheet group compared to both the cell suspension group and control group(percent bone volume,trabecular thickness,trabecular number),while trabecular spacing exhibited an inverse pattern.CONCLUSION Optimized DFSC sheets cultured under the identified conditions outperform DFSC suspensions.This study contributes to the industrial-scale production of DFSC sheets and establishes a foundation for cell therapy applications. 展开更多
关键词 PERIODONTITIS Dental follicle stem cells Cell sheet Periodontal tissue regeneration Mesenchymal stem cells Vitamin C Cell concentration L-ascorbic acid
暂未订购
Three-Point Bending Deformation Behavior of a High Plasticity Mg–2.6Er–0.6Zr Alloy Sheet
13
作者 Yuanxiao Dai Yue Zhang +3 位作者 Mei Wang Jie Liu Yaobo Hu Bin Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1109-1126,共18页
Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending st... Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending strains using electron backscatter diffraction and optical microscopy.The results show that the Mg–Er–Zr extruded sheet has excellent bending properties,with a failure bending strain of 39.3%,bending yield strength,and ultimate bending strength of 75.1 MPa and 250.5 MPa,respectively.The exceptional bending properties of the Mg–Er–Zr extruded sheets are primarily due to their fine grain size and the formation of rare-earth(RE)textures resulting from Er addition.Specifically,the in-grain misorientation axes(IGMA)and the twinning behaviors in various regions of the specimen during bending were thoroughly analyzed.Due to the polarity of the tensile twins and their low activation stress,a significant number of tensile twins are activated in the compression zone to regulate plastic deformation.The addition of Er weakens the basal texture of the sheet and reduces the critical resolved shear stress difference between non-basal slip and basal slip.Consequently,in the tensile zone,the basal and non-basal slips co-operate to coordinate the plastic deformation,effectively impeding crack initiation and propagation,and thereby enhancing the bending toughness of the Mg–Er–Zr sheet. 展开更多
关键词 Mg alloy sheet Three-point bending Deformation mechanism In-grain misorientation axis(IGMA)
原文传递
Tunable colossal negative magnetoresistance of topological semimetal EuB_(6) thin sheets
14
作者 Ke Zhu Qi Qi +12 位作者 Yaofeng Xie Lulu Pan Senhao Lv Guojing Hu Zhen Zhao Guoyu Xian Yechao Han Lihong Bao Ying Zhang Xiao Lin Hui Guo Haitao Yang Hong-Jun Gao 《Chinese Physics B》 2025年第9期560-565,共6页
EuB_(6),a magnetic topological semimetal,has attracted considerable attention in recent years due to its rich intriguing physical properties,including a colossal negative magnetoresistance(CNMR)ratio exceeding-80%,a t... EuB_(6),a magnetic topological semimetal,has attracted considerable attention in recent years due to its rich intriguing physical properties,including a colossal negative magnetoresistance(CNMR)ratio exceeding-80%,a topological phase transition and a predicted quantum anomalous Hall effect(QAHE)approaching the two-dimensional(2D)limit.Yet,studies of the influence of the dimensionality approaching 2D on the electronic transport properties of EuB_(6) are still scarce.In this work,EuB_(6) thin sheets with thicknesses ranging from 35μm to 180μm were successfully fabricated through careful mechanical polishing of high-quality EuB_(6) single crystals.The reduced thickness,temperature and magnetic field have a strong influence on the electronic transport properties,including the CNMR and carrier concentration of EuB_(6) thin sheets.As the thickness of EuB_(6) thin sheets decreases from 180μm to 35μm,the magnetization transition temperature and the corresponding suppressing temperature of the Kondo effect decrease from 15.2 K to 10.9 K,while the CNMR ratio increases from-87.2%to-90.8%.Furthermore,the weak antilocalization effect transits to a weak localization effect and the carrier concentration increases by 9.4%at 30 K in a 35μm EuB_(6) thin sheet compared to the value reported for a 180μm thin sheet.Our findings demonstrate an obvious tunable effect of the reduced dimensionality on the transport properties of EuB_(6) along with the temperature and magnetic field,which could provide a route to exploring the QAHE near the 2D limit in EuB_(6) and other topological semimetals. 展开更多
关键词 EuB_(6)thin sheets magnetic topological semimetal negative magnetoresistance Kondo effect weak localization
原文传递
Evolution of Microstructure and Mechanical Properties of AZ31 Sheets with Different Initial Microstructures During the Corrugated Wide Limit Alignment Process
15
作者 Hongyang Zhang Huihui Nie +3 位作者 Zhijian Li Hongsheng Chen Wei Liang Liuwei Zheng 《Acta Metallurgica Sinica(English Letters)》 2025年第6期1012-1028,共17页
Presetting tensile twins(TTs)can enhance the mechanical properties of magnesium(Mg)alloys.Two as-received(AR)sheets,as-received state-A(AR-A)with fiber texture and nonuniform grains and as-received state-B with basal ... Presetting tensile twins(TTs)can enhance the mechanical properties of magnesium(Mg)alloys.Two as-received(AR)sheets,as-received state-A(AR-A)with fiber texture and nonuniform grains and as-received state-B with basal texture and uniform equiaxial grains are selected to induce TTs via a novel method called corrugated wide limit alignment(CWLA),and the corresponding CWLA-processed sheets are denoted as CWLA-processed state-A(C-A)and CWLA-processed state-B(C-B).The results demonstrate that a larger initial average grain size correlates with a higher fraction of TTs induced in Mg sheets,thereby refining the grains and forming a new rolling direction(RD)tilted texture during CWLA.The ultimate tensile strength increases by 32%from AR-A to C-A,primarily due to refinement strengthening and twinning-induced strain hardening.The recrystallization mechanism of C-A is dominated by twinning-induced dynamic recrystallization(DRX),where DRX grains prefer to inherit the orientation of TTs,resulting in an enhanced RD-tilted texture and the formation of multi-modal texture.The recrystallization mechanism of C-B is mainly discontinuous DRX and continuous DRX,and the DRX grains prefer to inherit the orientation of matrix grains,ultimately forming a basal texture.In summary,the tensile mechanical behavior of pre-twinned Mg sheets significantly depends on the grain size and texture of the AR sheets,so they present similar changing trends during tensile deformation. 展开更多
关键词 Mg sheet Texture Grain size Corrugated wide limit alignment(CWLA) Tensile twin(TT) Dynamic recrystallization(DRX)
原文传递
Heat Conduction and Its Related Interdisciplinary Areas:Self-Excited Oscillations in a Thermomechanical Elastic Sheet
16
作者 Xiangying Shen 《Chinese Physics Letters》 2025年第9期311-317,共7页
We present a minimal theoretical model for self-sustained oscillations of a thin elastic sheet on a hot plate,induced by thermomechanical coupling.As the plate temperature increases,the sheet’s static deflection beco... We present a minimal theoretical model for self-sustained oscillations of a thin elastic sheet on a hot plate,induced by thermomechanical coupling.As the plate temperature increases,the sheet’s static deflection becomes unstable via a Hopf bifurcation at a critical temperature TC,giving rise to spontaneous periodic motion.Linear stability analysis yields analytical expressions for the critical oscillation temperature TC and the oscillation period at onset.Numerical simulations of the nonlinear equations confirm the bifurcation and reveal how key parameters(stiffness,thermal softening,thermal coupling,etc.)govern the oscillation amplitude and waveform.Finally,we demonstrate that the self-oscillating sheet can perform mechanical work as a heat engine,and we compare its performance to the Carnot efficiency limit.This work provides design principles for thermally driven selfoscillators with potential applications in soft robotics,adaptive structures,and thermal energy harvesting. 展开更多
关键词 thermomechanical couplingas spontaneous periodic motionlinear stability analysis heat conduction hopf bifurcation Hopf bifurcation thin elastic sheet self excited oscillations minimal theoretical model
原文传递
Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets
17
作者 Shirui Xu Zhuo Pan +22 位作者 Ying Gao Jiarui Zhao Shiyou Chen Zhusong Mei Xun Chen Ziyang Peng Xuan Liu Yulan Liang Tianqi Xu Tan Song Qingfan Wu Yujia Zhang Zhipeng Liu Zihao Zhang Haoran Chen Qihang Han Jundong Shen Chenghao Hua Kun Zhu Yanying Zhao Chen Lin Xueqing Yan Wenjun Ma 《Matter and Radiation at Extremes》 2025年第2期16-23,共8页
Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challe... Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challenges.In this work,we demonstrate for the firs time that the coherent radiation farfiel patterns from laser–foil interactions can serve as an in situ,real-time,and easy-to-implement diagnostic for an ultraintense laser focus.The laser-driven electron sheets,curved by the spatially varying laser fiel and leaving the targets at nearly the speed of light,produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities.Assisted by particle-in-cell simulations,we can achieve measurements of the intensity and the focal spot,and provide immediate feedback to optimize the focal spots for extremely high intensity. 展开更多
关键词 diagnosis focal spot peak intensity laser foil interactions laser fi coherent radiation farfiel patterns laser driven electron sheets experimental validation laser intensity focal spot coherent radiation
在线阅读 下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:2
18
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
原文传递
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:2
19
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
原文传递
Elastic-viscoplastic behaviors of polymer-blend geocell sheets:Numerical and experimental investigations 被引量:1
20
作者 Yang Zhao Jianbin Chen +7 位作者 Zheng Lu Jie Liu Abdollah Tabaroei Chuxuan Tang Yong Wang Lipeng Wu Bo Wang Hailin Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4261-4271,共11页
Polymer-blend geocell sheets(PBGS)have been developed as substitute materials for manufacturing geocells.Various attempts have been made to test and predict the behaviors of commonly used geogrids,geotextiles,geomembr... Polymer-blend geocell sheets(PBGS)have been developed as substitute materials for manufacturing geocells.Various attempts have been made to test and predict the behaviors of commonly used geogrids,geotextiles,geomembranes,and geocells.However,the elastic-viscoplastic behaviors of novel-developed geocell sheets are still poorly understood.Therefore,this paper investigates the elastic-viscoplastic behaviors of PBGS to gain a comprehensive understanding of their mechanical properties.Furthermore,the tensile load-strain history under various loading conditions is simulated by numerical calculation for widespread utilization.To achieve this goal,monotonic loading tests,short-term creep and stress relaxation tests,and multi-load-path tests(also known as arbitrary loading history tests)are performed using a universal testing machine.The results are simulated using the nonlinear three-component(NLTC)model,which consists of three nonlinear components,i.e.a hypo-elastic component,a nonlinear inviscid component,and a nonlinear viscid component.The experimental and numerical results demonstrate that PBGS exhibit significant elastic-viscoplastic behavior that can be accurately predicted by the NLTC model.Moreover,the tensile strain rates significantly influence the tensile load,with higher strain rates resulting in increased tensile loads and more linear load-strain curves.Also,parametric analysis of the rheological characteristics reveals that the initial tensile strain rates have negligible impact on the results.The rate-sensitivity coefficient of PBGS is approximately 0.163,which falls within the typical range observed in most geosynthetics. 展开更多
关键词 Polymer-blend geocell sheets Geosynthetics Elastic-viscoplastic behavior Numerical simulations Tensile load-strain response
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部