Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° a...Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° and ±60° The triaxial yarns in micromechanieal representative unit cell (RUC) were idealized as curved beams with a path depicted using the sinusoidal shape functions, and the tensile and shear moduli of TWF composites were derived by means of the strain energy approach founded on micromechanics. In order to validate the new models, the predictions were compared with the experimental data from literature. It was shown that the predictions from the new model agree well with the experimental results. Using these models, the tensile and shear properties of TWF composites could be predicted based only on the properties of basic woven fabric.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.51375033 and 51405006)
文摘Novel micromechanical curved beam models were presented for predicting the ten- sile and shear moduli of triaxial weave fabric (TWF) composites by considering the interactions between the triaxial yarns of 0° and ±60° The triaxial yarns in micromechanieal representative unit cell (RUC) were idealized as curved beams with a path depicted using the sinusoidal shape functions, and the tensile and shear moduli of TWF composites were derived by means of the strain energy approach founded on micromechanics. In order to validate the new models, the predictions were compared with the experimental data from literature. It was shown that the predictions from the new model agree well with the experimental results. Using these models, the tensile and shear properties of TWF composites could be predicted based only on the properties of basic woven fabric.