In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays ...In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis.The Non-Subsampled Shearlet Transform(NSST)that captures more visual information than conventional wavelet transforms is employed for feature extraction.As the feature space of NSST is very high,a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies.A combination of features that includes Gray Level Co-occurrence Matrix(GLCM)based features,Histograms of Positive Shearlet Coefficients(HPSC),and Histograms of Negative Shearlet Coefficients(HNSC)are estimated.The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers;k-Nearest Neighbor(kNN),Naive Bayes(NB)and Support Vector Machine(SVM)classifiers.The output of individual trained classifiers for a testing input is hybridized to take a final decision.The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data(REMBRANDT)database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.展开更多
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati...The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.展开更多
This paper studies directional Hlder regularity of two-variable functions by their shearlet coefficients, where the shearlets are defined by Guo and Labate(2013). We provide necessary conditions for a function possess...This paper studies directional Hlder regularity of two-variable functions by their shearlet coefficients, where the shearlets are defined by Guo and Labate(2013). We provide necessary conditions for a function possessing some directional H¨older regularity and the corresponding sufficient conditions, motivated by the work of Sampo and Sumetkijakan(2009) and Lakhonchai et al.(2010).展开更多
文摘In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis.The Non-Subsampled Shearlet Transform(NSST)that captures more visual information than conventional wavelet transforms is employed for feature extraction.As the feature space of NSST is very high,a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies.A combination of features that includes Gray Level Co-occurrence Matrix(GLCM)based features,Histograms of Positive Shearlet Coefficients(HPSC),and Histograms of Negative Shearlet Coefficients(HNSC)are estimated.The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers;k-Nearest Neighbor(kNN),Naive Bayes(NB)and Support Vector Machine(SVM)classifiers.The output of individual trained classifiers for a testing input is hybridized to take a final decision.The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data(REMBRANDT)database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.
文摘The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.
基金supported by National Natural Science Foundation of China(Grant No.11271038)
文摘This paper studies directional Hlder regularity of two-variable functions by their shearlet coefficients, where the shearlets are defined by Guo and Labate(2013). We provide necessary conditions for a function possessing some directional H¨older regularity and the corresponding sufficient conditions, motivated by the work of Sampo and Sumetkijakan(2009) and Lakhonchai et al.(2010).