期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Shearing Characteristics of Jurassic Silty Mudstone Slip Zone under Different Water Contents and Normal Stresses Based on Ring Shear Tests
1
作者 Nang Mon Mon Thaw Changdong Li +4 位作者 Zongxing Zou Wenqiang Chen Jingjing Long Aung Min Oo Dafalla Wadi 《Journal of Earth Science》 2025年第2期654-667,共14页
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m... Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding. 展开更多
关键词 silty mudstone slip zone water content normal stress drained ring shear test residual shear strength engineering geolgoy
原文传递
Cyclic behavior of root-loess composites under direct simple shear test conditions and insights from discrete element method modeling
2
作者 SUN Yuan LI Hui CHENG Zhifeng 《水利水电技术(中英文)》 北大核心 2025年第S1期665-680,共16页
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f... Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°. 展开更多
关键词 root-soil composite cyclic direct simple shear tests PFC^(3D)
在线阅读 下载PDF
Acoustic emission behavior generated from active waveguide during shearing process
3
作者 Yang Chen Hongyong Yuan +4 位作者 Lizheng Deng Rui Pan Jianguo Chen Lida Huang Mingzhi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6571-6585,共15页
Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by acti... Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by active waveguide facilitates monitoring the development of shear surface and provides a foundation for quantifying landslide movement.Backfill particles are the dominant AE sources in active waveguides,typically chosen from materials such as gravels or sands.However,the influence of particle sizes and gradings has not been clarified in existing laboratory models or field monitoring.This research introduces a direct shear test for active waveguide,where spherical glass beads are employed to precisely regulate the size and grading of backfill particles.A programmable logic controller maintains a constant shearing speed and equivalent total deformation.Through a comprehensive analysis of AE,deformation,and mechanical measurements,this study evaluates the impact of particle size and grading on monitoring capabilities.The findings suggest that the AE mechanism in glass beads is attributed to particle collision and dislocation,leading to AE events characterized by low amplitude and energy levels.The percentage of high-amplitude AE events rises steadily with the progression of shearing.The correlation between shear force,cumulative ring down count(RDC)of AE,and deformation conforms to a power function,with the exponent relying on particle size,grading,and shearing speed.Notably,the combination of small particles and low shearing speeds can yield the maximum cumulative RDC,while selecting particles with uneven grading will significantly enhance the intensity of AE signals from active waveguide. 展开更多
关键词 Landslide monitoring Active waveguide Acoustic emission Direct shear test Particle property
在线阅读 下载PDF
Multi-directional disturbance effect of shear mechanical behaviors and fracturing mechanisms of rockmass intermittent structural plane under true triaxial shear test
4
作者 Zhi Zheng Zhanpeng Ma +4 位作者 Jinghua Qi Guoshao Su Gaoming Lu Shufeng Pei Quan Jiang 《International Journal of Mining Science and Technology》 2025年第6期933-960,共28页
After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimension... After the excavation of deep mining tunnels and underground caverns,the stability of surrounding rock controlled by structural planes is prone to structural damage and even engineering disasters due to three-dimensional stress redistribution and multi-directional dynamic construction interference.However,the shear mechanical behavior,fracture evolution mechanism and precursor characteristics of rockmass under true triaxial stress and multi-directional coupling disturbance are not unclear.Therefore,this study carried out true triaxial shear tests on limestone intermittent structural planes under uni-,bi-and tri-directional coupling disturbances to analyze its mechanical behavior,fracture evolution mechanism and precursor characteristics.The results show that as the disturbance direction increase,the shear strength of limestone generally decreases,while the roughness of structural planes and the degree of anisotropy generally exhibit an increasing trend.The proportion of shear cracks on the structural plane increases with the increase of shear stress.The disturbance strain rate before failure shows a U-shaped trend.Near to disturbance failure,there were more high-energy and high-amplitude acoustic emission events near the structural plane,and b-value drops rapidly below 1,while lgN/b ratio increased to above 3.These findings provide experimental recognition and theoretical support for assessing the stability of rockmass under blasting excavation. 展开更多
关键词 Different direction disturbances Shear mechanical properties Shear failure mechanism Shear failure precursor True triaxial shear test Rockmass acoustic emission
在线阅读 下载PDF
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests
5
作者 Morteza Esmaeili Hamidreza Heydari +1 位作者 Maziar Mokhtari Sara Darvishi 《Railway Engineering Science》 2025年第1期94-107,共14页
Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements ... Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration.One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires.Utilizing these waste materials in the ballasted railway track will contribute to sustainable development,an eco-friendly system,and green infrastructure.So in a state-of-the-art insightful,the ballast aggregates,including a mixture of steel slag and stone aggregates,are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps.This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap.To achieve this goal,a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates.The concluded results indicate that the optimal mixing ratio is attained by a combination of 75%slag and 25%stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm.In this case,the shear strength,internal friction angle,vertical displacement,and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of+28%,+9%,-28%,and-15%,respectively. 展开更多
关键词 Ballast deterioration Ballast stabilization Steel slag aggregates Large-scale direct shear test Waste tire geoscrap
在线阅读 下载PDF
Field testing of shear strength of granite residual soils 被引量:1
6
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils Shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
在线阅读 下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode 被引量:1
7
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints Brittle rock Direct shear test Damage-based constitutive model Parameters analysis
在线阅读 下载PDF
Study on Shear Strength Characteristics of Basalt-Concrete Bonding Interface Based on in-situ Direct Shear Test 被引量:1
8
作者 Peng Xia Xinli Hu +5 位作者 Chunye Ying Shuangshuang Wu Chu Xu Xuan Wang Hao Chen Hang Duan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期553-567,共15页
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets... In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%. 展开更多
关键词 direct shear test basalt-concrete bonding interface shear strength parameters engineering geogolgy
原文传递
Shear failure behaviors and degradation mechanical model of rockmass under true triaxial multi-level loading and unloading shear tests
9
作者 Zhi Zheng Ronghua Li +3 位作者 Pengzhi Pan Jinghua Qid Guoshao Su Hong Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1385-1408,共24页
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c... The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction. 展开更多
关键词 True triaxial shear test Lateral stress effect Acoustic emission monitoring Shear parameters evolution Shear degradation mechanical model
在线阅读 下载PDF
Micromechanical modeling of hollow cylinder torsional shear test on sand using discrete element method
10
作者 Shunxiang Song Pei Wang +1 位作者 Zhenyu Yin Yi Pik Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5193-5208,共16页
Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investiga... Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Representative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stressestrain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand. 展开更多
关键词 SAND Hollow cylinder torsional shear test(HCTST) Discrete element method(DEM) Principal stress rotation MICROMECHANICS ANISOTROPY
在线阅读 下载PDF
Shear damage constitutive model of rock-like joint surface considering the coupling effect of cyclic water intrusion and loading
11
作者 Zhe Qin Runchang Zhang +2 位作者 Ke Wang Lixue Cao Yushui Yan 《International Journal of Mining Science and Technology》 2025年第6期881-895,共15页
Prolonged cyclic water intrusion has progressively developed joints in the hydro-fluctuation belt,elevating the instability risk of reservoir bank slopes.To investigate its impact on joint shear damage evolution,joint... Prolonged cyclic water intrusion has progressively developed joints in the hydro-fluctuation belt,elevating the instability risk of reservoir bank slopes.To investigate its impact on joint shear damage evolution,joint samples were prepared using three representative roughness curves and subjected to direct shear testing following cyclic water intrusion.A shear damage constitutive model considering the coupling effect of cyclic water intrusion and load was developed based on macroscopic phenomenological damage mechanics and micro-statistical theory.Results indicate:(1)All critical shear mechanical parameters(including peak shear strength,shear stiffness,basic friction angle,and joint compressive strength)exhibit progressive deterioration with increasing water intrusion cycles;(2)Model validation through experimental curve comparisons confirms its reliability.The model demonstrates that intensified water intrusion cycles reduce key mechanical indices,inducing a brittle-to-ductile transition in joint surface deformation—a behavior consistent with experimental observations;(3)Damage under cyclic water intrusion and load coupling follows an S-shaped trend,divided into stabilization(water-dominated stage),development(load-dominated stage),and completion stages.The research provides valuable insights for stability studies,such as similar model experiments for reservoir bank slopes and other water-related projects. 展开更多
关键词 Rock joint Cyclic water intrusion Direct shear test Constitutive model Damage evolution Rock-like material
在线阅读 下载PDF
Experimental insights into anchorage performance of en-echelon joints under cyclic shear loading
12
作者 Bin Wang Qiangyong Zhang +2 位作者 Yujing Jiang Kang Duan Hongbin Chen 《International Journal of Mining Science and Technology》 2025年第3期399-416,共18页
Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints... Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release. 展开更多
关键词 En-echelon joints Shear strength deterioration Cyclic shear test Anchorage performance Energy absorption characteristics Acoustic emission
在线阅读 下载PDF
Interface Shear Behavior Between Bio-Inspired Sidewall of a Scaled Suction Caisson and Sand Under Pull-out Load
13
作者 LI Da-yong LIANG Hao +1 位作者 ZHAO Ji-peng ZHANG Yu-kun 《China Ocean Engineering》 2025年第4期708-717,共10页
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th... The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects. 展开更多
关键词 scaled suction caisson interface shear test shear strength interface friction angle bio-inspired surface pull-out load
在线阅读 下载PDF
Thermal effect on shear and compressive behaviors of rock fractures:Cases of sandstone and granite
14
作者 Abdel Kareem Alzo'ubi Mahmoud Alneasan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7007-7022,共16页
The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal tr... The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal treatment on the shear behavior of sedimentary sandstone and igneous granite,which are abundant in the Earth's crust.Direct shear tests were conducted on rock joints at room temperature(RT),250℃,and 500℃.The results show that the joints in sandstone and granite exhibit improved compressive and shear strength up to a temperature threshold of 200℃–350℃,followed by significant weakening beyond this range.This study investigated key parameters,including normal and shear stiffness,maximum joint closure,peak and residual shear strengths,internal friction angle,dilation angle,and cohesion.The compressive behavior of both rock types followed a modifiedBandis's equation.The peak shear strength followed Patton's bilinear and Jaeger's nonlinear failure criteria more accurately than the Mohr–Coulomb criterion.The results of this study provide valuable insights into the temperature-dependent behavior of sandstone and granite joints under compressive and shear loads,and their interoperation was strongly dependent on the mineralogical and structural components of the two rock types.These results have advanced our understanding of the temperature-dependent behavior of rock fractures,improving the safety of underground structures under thermal effects. 展开更多
关键词 Sedimentary sandstone Igneous granite Thermal treatment Joint shear behavior Joint compressive behavior Direct shear test
在线阅读 下载PDF
Analyzing the stability of surface mine waste dump based on particle size scale distribution
15
作者 YANG Jun DONG Meiqiang +2 位作者 ZHANG Shaochen BIAN Wenhui SONG Hongxu 《Journal of Mountain Science》 2025年第8期3038-3052,共15页
High-steep waste dumps in open-pit mines frequently demonstrate complex particle-size distributions and fractal characteristics along their slopes,which have a significant impact on slope stability.This study takes th... High-steep waste dumps in open-pit mines frequently demonstrate complex particle-size distributions and fractal characteristics along their slopes,which have a significant impact on slope stability.This study takes the Dasuji South waste dump in Inner Mongolia as a case to quantify the fractal dimensions of soil-rock mixtures at various slope heights,and to clarify how these fractal properties govern shear strength and deformation behavior under overlying stress,thereby affecting the overall stability of the waste dump slope.Field sampling and laboratory tests were conducted to determine the particle-size composition and fractal dimensions while direct shear tests were conducted and revealed that lower fractal dimensions indicating coarser particle assemblages significantly enhance shear resistance.Complementary PFC_(2)D discrete element simulations demonstrate that slopes composed of lower-fractaldimension materials deform less and contain localized deformation zones,whereas higher-fractal-dimension slopes experience more extensive displacement and a heightened risk of landslides.These findings refine our understanding of the relationship between fractal grain-size distribution and slope stability,providing a robust theoretical basis for improved stability assessment and optimized support strategies in deep open-pit mining waste dumps,and ultimately aiding in more effective disaster prevention within geotechnical engineering. 展开更多
关键词 Waste dump Particle size composition Fractal features Shear test Discrete elements.
原文传递
A cohesive-frictional elastoplastic constitutive model for rock joint
16
作者 Hongying Wang Qiang Zhang +3 位作者 Richeng Liu Tao Li Xiaowei Quan Yujing Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1068-1084,共17页
Rock joints always have a smaller strength,and it plays an important influence on the overall strength of rock mass.The mechanical behavior of rock joints is mainly governed by the surface topography,normal stress,and... Rock joints always have a smaller strength,and it plays an important influence on the overall strength of rock mass.The mechanical behavior of rock joints is mainly governed by the surface topography,normal stress,and failure degree.In this study,a series of direct shear tests for four different rough rock joints under five normal stresses was carried out.The shear and normal stiffnesses were first determined,and the shear shrinkage effect was represented by a shear-normal coupling coefficient.Assuming that the strength of the joint is composed of frictional and cohesive parts,the evolutions of cohesion,friction angle with joint roughness coefficient(JRC),and plastic shear displacement are obtained.The dilatancy behavior is described by the dilation angle,which is considered a function of JRC,plastic shear displacement,and normal stress.A cohesive-frictional elastoplastic constitutive model is hence proposed.The theoretical curves under constant normal stress conditions of the proposed model are in good agreement with the experimental results.The shear behaviors under constant normal stiffness and constant normal displacement conditions can be predicted using the new constitutive model. 展开更多
关键词 Rock joint Shear test Mechanical behavior Constitutive model Joint roughness coefficient
在线阅读 下载PDF
Shear behavior of rock joints reinforced with fully-grouted and energy-absorbing bolts subjected to shear cycles
17
作者 Hanfang Zheng Xuezhen Wu +2 位作者 Yujing Jiang Gang Wang Zhiyong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4314-4328,共15页
In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in ... In geotechnical engineering,rock bolts are commonly used for reinforcement,while the surrounding rock mass bears varying degrees of shear loads.The shear rate affects the stability of bolted rock joints,especially in projects susceptible to dynamic shear loads.In laboratory experiments,fully-grouted bolts and energy-absorbing bolts were used as research objects,and artificial rock specimens with rough joints were fabricated to analyze the shear characteristics and damage mechanisms of bolted rock joints under cyclic shear conditions and different shear velocities.The results showed that as the shear rate increased,the shear strength of bolted rock joint specimens decreased.Degradation of asperities resulted in no obvious peak shear stress in the specimens.Energy-absorbing bolts exhibited greater deformation capacity,with significant necking phenomena and the ability to withstand larger shear displacements.In contrast,fully-grouted bolts,which have threaded surfaces that provide higher bonding performance,exhibited a reduced capacity for plastic deformation and were prone to breaking under smaller shear displacements.Although the shear stiffness of specimens reinforced by energy-absorbing bolts was slightly lower than that of fully-grouted bolt specimens,they demonstrated greater stability under various shear rates.The absorbed shear energy showed that energy-absorbing bolts had superior coordinated deformation capabilities,thus exhibiting greater absorbed shear energy than fully-grouted bolts.Overall,fully-grouted bolts are more suitable for projects requiring higher rock shear strength and overall stiffness.In contrast,energy-absorbing bolts are more suitable for coping with dynamic or fluctuating load conditions to maintain the relative stability of jointed rock masses. 展开更多
关键词 Energy-absorbing bolt Fully-grouted bolt Shear rate Cyclic shear test Shear absorbed energy
在线阅读 下载PDF
Undrained cyclic simple shear characteristics of transparent sand manufactured by fused quartz
18
作者 ZHAO Jin-qiao OU Qiang +4 位作者 JIANG Chun-yong DING Xuan-ming ZHOU Hang YANG Chang-wei DENG Wei-ting 《Journal of Central South University》 2025年第9期3427-3446,共20页
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ... Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests. 展开更多
关键词 transparent sand fused quartz undrained cyclic simple shear tests dynamic characteristics initial shear stress
在线阅读 下载PDF
Influence of particle size distribution and normal pressure on railway ballast:A DEM approach
19
作者 Z.Yan Ali Zaoui W.Sekkal 《High-Speed Railway》 2025年第1期28-36,共9页
Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stabili... Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stability and dynamical behaviour under external loading and environmental changes.This paper investigates the effect of particle size distribution and normal pressure on the mechanical response of a ballast bed.Grading curves of ballast layers with different sizes are illustrated to discuss their strength behaviour under various strains to deduce the significant effect on the direct shear performance of the ballast layer.Direct shear tests with different Particle Size Distribution(PSD)were reproduced using the Discrete Element Method(DEM).It is noticed that when the number of small-sized ballast increases,the shear strength and the friction angle increase to varying degrees under different normal pressures,with an average increase of 27%and 8%,respectively.When the number of large-sized ballast decreases,the shear strength and the friction angle decrease to varying degrees under different normal pressures,with an average decrease of 6%and 3%,respectively. 展开更多
关键词 DEM BALLAST Direct shear test Particle size distribution
在线阅读 下载PDF
Featured Articles
20
《Journal of Southeast University(English Edition)》 2025年第2期F0003-F0003,共1页
Title:Seismic fragility of unreinforced masonry buildings with bonded scrap tire rubber isolators under far-field and near-field earthquakes Authors:WANG Mingyang;GAO Wenjun;LU Xilin;SHI Weixing A bstract:To improve t... Title:Seismic fragility of unreinforced masonry buildings with bonded scrap tire rubber isolators under far-field and near-field earthquakes Authors:WANG Mingyang;GAO Wenjun;LU Xilin;SHI Weixing A bstract:To improve the seismic performance of unreinforced masonry(URM)buildings in the Himalayan regions,including Western China,India,Nepal,and Pakistan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102 g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632 g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings. 展开更多
关键词 bonded scrap tire rubber isolator bstri unreinforced masonry bonded scrap tire rubber isolators vertical compression horizontal shear tests seismic performance unreinforced masonry buildings improve seismic performance DYNAMIC
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部