The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat ...The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first- order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness, The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized Ae and IL thickness agree well with the LES outputs.展开更多
Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately...Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately. It is demonstrated that the plasma viscosity indeed has a stabilization effect on the MRT mode in the whole wavenumber region, and its influence increases with the perturbation wavenumber increasing. After the characteristics and feasibility of the approximate method have been investigated, we apply it to the stability analysis of viscous plasma where a sheared axial flow (SAF) is involved, and we attain an analytical dispersion relation. It is suggested that the viscosity and the SAF are complemental with each other, and a wide wavenumber range of perturbation is possible to be restrained if the SAF and the viscosity are large enough. Finally, we calculate the possible value of viscosity parameter according to the current experimental conditions, and the results show that since the value of viscosity is much less than the threshold value, its mitigation effect is small enough to be neglected. The role of the viscosity in the stabilization becomes considerable only if special techniques are so developed that the Z-pinch plasma viscosity can be increased greatly.展开更多
Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( A...Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.展开更多
Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model ...Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (Ae). This leads to a simple expression of the entrainment rate, in which Ae needs to be parameterized. According to the results in Liu et al. (2016), Ae can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V.Grib kimberlite pipe(Arkhangelsk Diamond Province,Russia) was studied.Based on petrographic characteristics,the perid...The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V.Grib kimberlite pipe(Arkhangelsk Diamond Province,Russia) was studied.Based on petrographic characteristics,the peridotite xenolith reflects a sheared peridotite.The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages:(1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains(Gar1) with sinusoidal rare earth elements(REE) chondrite C1 normalized patterns;(2) a neoblastic olivine and orthopyroxene assemblage;(3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones(Gar2).Major and trace element compositions of olivine,orthopyroxene,clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent.The nature of the metasomatic agent was estimated based on high field strength elements(HFSE) composition of olivine neoblasts,the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene.All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.展开更多
According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld s...According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld stability equation is applied to develop the method of determining the critical velocity of the oil film, and the criterion for stability of the oil film is obtained. Meanwhile, a formula describing the relation between the thickness of the oil film and the velocity of the water flow is also given and examined by the laboratory experiment.展开更多
Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various micr...Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.展开更多
The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but ...The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.展开更多
Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and ...Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and non-circular cross-section. Equilibrium properties includingthe fiow-induced density asymmetry are analyzed.展开更多
An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextens...An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextensive trapped electrons. The Schamel equation and its stationary solution in the form of solitary waves are obtained for this inhomogeneous plasma. It is shown that the amplitude of IA solitary waves increases with higher trapping efficiency(β), while the width remains almost the same. Further, it is found that the amplitude of the solitary waves decreases with enhanced normalized drift speed, shear flow parameter and the population of the energetic particles. The size of the nonlinear solitary structures is calculated to be a few hundred meters and it is pointed out that the present results are useful to understand the solar wind plasma.展开更多
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kep...The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.展开更多
In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization inc...In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs.By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5 ± 9.8 μB(Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.展开更多
In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly pos...In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.展开更多
This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space pla...This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.展开更多
The oriented chitosan films obtained from pre-sheared liquid crystalline chitosan/dichloroacetic acid (DCA) solutions were studied by means of polarized optical microscopy (POM), scanning electron microscopy (SEM), in...The oriented chitosan films obtained from pre-sheared liquid crystalline chitosan/dichloroacetic acid (DCA) solutions were studied by means of polarized optical microscopy (POM), scanning electron microscopy (SEM), infra-red dichroism technique and wide angle X-ray diffraction (WAXD). The sheer induced band texture in the film was found to correspond to the sinusoidal fibrillar microstructure along the shearing direction on the basis of POM and SEM observations. The sinusoidal fibril was found to be lying within the film plane. The model of chitosan molecular orientation in the pre-sheared film with band texture can be established assuming that the main chain orients in the shearing direction and the side group is perpendicular to the shearing direction. The WAXD azimuthal scanning at 2 theta = 20 degrees indicates that the (002) plane orients perpendicular to the shearing direction.展开更多
In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examine...In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examined using a Lagrangian trajectory method.Evaporatively forced downdrafts in the outer rainbands can transport low-entropy air downward,resulting in the lowestθ_(e)in the downshear-left boundary layer.Quantitative estimations ofθ_(e)recovery indicate that air parcels,especially those originating from the downshear-left outer core,can gradually revive from a low entropy state through surface enthalpy fluxes as the parcels move cyclonically.As a result,the maximumθ_(e)is observed in the downshear-right quadrant of a highly sheared TC.The trajectory analyses also indicate that parcels that move upward in the outer rainbands and those that travel through the inner core due to shear make a dominant contribution to the midlevel enhancement ofθ_(e)in the downshear-left outer core.In particular,the former plays a leading role in suchθ_(e)enhancements,while the latter plays a secondary role.As a result,moist potential stability occurs in the middle-to-lower troposphere in the downshear-left outer core.展开更多
This study proposes an alternative approach to the investigation of high flow hydrogeological fractures within the basement in the Dabakala region of north-central Côte d’Ivoire. The used approach consists o...This study proposes an alternative approach to the investigation of high flow hydrogeological fractures within the basement in the Dabakala region of north-central Côte d’Ivoire. The used approach consists of exploring the subsurface by measuring electrical resistivity contrasts along the main shear direction within crystallophyllian rocks. Electrical resistivity profiling and vertical electrical sounding techniques, coupled with boreholes monitoring, have identified fractured aquifers whose best flow rates are around 96 and 116 m<sup>3</sup>/h. These aquifers mostly hosted in granodiorite have an average strength of 10 meters and are located at depth of around 100 meters. They are associated with open fractures created by tangential shear stresses that have affected the Dabakala volcano-sedimentary trench formations. The search for fractured aquifers along the main shear direction offers great perspective for obtaining high flow rates.展开更多
Compacted granular material,integral to geotechnical engineering,undergoes translation,rotation,and interlocking when subject to shear displacements or external loads.The present study focuses on the interlocking of h...Compacted granular material,integral to geotechnical engineering,undergoes translation,rotation,and interlocking when subject to shear displacements or external loads.The present study focuses on the interlocking of heterogeneous granular materials,a complex behavior influenced by gradation,compaction,and varying particle geometry,and has consequently received limited attention in existing research.To address this research gap,we conducted an analysis on the effect of grain interlocking on the shear resistance of granular assemblies,using a combination of laboratory testing and the discrete element method(DEM).Initially,large-scale direct shear tests were conducted on gravel−sand mixes with varying degrees of compaction and normal pressure.One of the mixes also underwent subsequent shear reversal to explore the differences in grain interlocking between the two shearing processes on the shear plane.After analyzing the laboratory results,a mesoscopic scale investigation was performed by replicating the test using discrete element simulations.To facilitate this,granular particle geometries were measured using 3D laser scanning based on the physical lab tests.Subsequently,based on these scans,discrete element R-block and ball models were utilized to construct both the coarse and fine particles within the mix.Surface vibro-compaction was employed to regulate the degree of compaction.The results indicate that an increase in vertical pressure,coupled with a zero dilatancy angle,results in a rising stress ratio,indicative of grain interlocking.This interlocking exhibits a positive correlation with both the coarse content and the degree of compaction,and varies depending on the shear displacement.As interlocking progresses,the shear band,induced by particle movement,expands and is associated with reduced particle rotation near the shear band.The study further reveals a consistent positive correlation between interlocking and the principal orientation angle of strong normal contact forces,as well as a correlation between interlocking and mobilized contacts.展开更多
Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fraction...Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fractions, velocities, velocity fluctuations and granular temperatures are measured. The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the current simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant No.40975004)the State Key Basic Program(973)Program(Grant No.2013CB430100)
文摘The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first- order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness, The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized Ae and IL thickness agree well with the LES outputs.
基金Project supported by the National Science Foundation of China (Grant Nos 10575014 and 10635050)
文摘Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately. It is demonstrated that the plasma viscosity indeed has a stabilization effect on the MRT mode in the whole wavenumber region, and its influence increases with the perturbation wavenumber increasing. After the characteristics and feasibility of the approximate method have been investigated, we apply it to the stability analysis of viscous plasma where a sheared axial flow (SAF) is involved, and we attain an analytical dispersion relation. It is suggested that the viscosity and the SAF are complemental with each other, and a wide wavenumber range of perturbation is possible to be restrained if the SAF and the viscosity are large enough. Finally, we calculate the possible value of viscosity parameter according to the current experimental conditions, and the results show that since the value of viscosity is much less than the threshold value, its mitigation effect is small enough to be neglected. The role of the viscosity in the stabilization becomes considerable only if special techniques are so developed that the Z-pinch plasma viscosity can be increased greatly.
基金Supported by the National Natural Science Foundation of China(10902050)the China Postdoctoral Science Foundation Funded Project(20100481138)the Aeronautical Science Foundation of China(20101452017)
文摘Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.
基金sponsored by the National Natural Science Foundation of China(Grant No.40975004)the State Key Basic Program(973)(Grant No.2013CB430100)
文摘Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (Ae). This leads to a simple expression of the entrainment rate, in which Ae needs to be parameterized. According to the results in Liu et al. (2016), Ae can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
基金financially supported by the Program for Development MSUsupported by the Russian Foundation for Basic Research, project Nos.15-05-03778a and 16-05-00298a
文摘The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V.Grib kimberlite pipe(Arkhangelsk Diamond Province,Russia) was studied.Based on petrographic characteristics,the peridotite xenolith reflects a sheared peridotite.The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages:(1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains(Gar1) with sinusoidal rare earth elements(REE) chondrite C1 normalized patterns;(2) a neoblastic olivine and orthopyroxene assemblage;(3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones(Gar2).Major and trace element compositions of olivine,orthopyroxene,clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent.The nature of the metasomatic agent was estimated based on high field strength elements(HFSE) composition of olivine neoblasts,the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene.All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.
文摘According to the observation in experiment of stability of the oil film, the assumption of velocity distribution for both the water flow and the oil film is introduced. On the basis of the assumption, Orr-Sommerfeld stability equation is applied to develop the method of determining the critical velocity of the oil film, and the criterion for stability of the oil film is obtained. Meanwhile, a formula describing the relation between the thickness of the oil film and the velocity of the water flow is also given and examined by the laboratory experiment.
文摘Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.
基金financial support from National Natural Science Foundation of China (12072211)Sichuan Province Science and Technology Project (2020JDJQ0029)。
文摘The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.
基金National Science Foundation (19975015) and the China Nuclear Science Foundation(Y7l00C030l).
文摘Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and non-circular cross-section. Equilibrium properties includingthe fiow-induced density asymmetry are analyzed.
文摘An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextensive trapped electrons. The Schamel equation and its stationary solution in the form of solitary waves are obtained for this inhomogeneous plasma. It is shown that the amplitude of IA solitary waves increases with higher trapping efficiency(β), while the width remains almost the same. Further, it is found that the amplitude of the solitary waves decreases with enhanced normalized drift speed, shear flow parameter and the population of the energetic particles. The size of the nonlinear solitary structures is calculated to be a few hundred meters and it is pointed out that the present results are useful to understand the solar wind plasma.
基金The project supported by the National Natural Science Foundation of China (Grant No.19672070)
文摘The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0208403 and 2016YFA0200403)the National Natural Science Foundation of China(Grant Nos.51472057,11874129,91323304,and 11674387)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040101)the Baotou Rare Earth Research and Development Centre,Chinese Academy of Sciences(Grant No.GZR 2018001)
文摘In this work we report that after single-walled carbon nanotubes(SWNTs) are sheared with a pair of titanium scissors,the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs.By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5 ± 9.8 μB(Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.
基金supported by the National Key Research and Development Program of China [grant numbers 2017YFC1501601 and 2015CB452803]the National Natural Science Foundation of China [grant numbers41475058,41730961,and 41875054]+1 种基金the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2016Z003]the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.
基金The project supported by the National Natural Science Foundation of China (Nos. 10075047, 40336052)
文摘This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.
文摘The oriented chitosan films obtained from pre-sheared liquid crystalline chitosan/dichloroacetic acid (DCA) solutions were studied by means of polarized optical microscopy (POM), scanning electron microscopy (SEM), infra-red dichroism technique and wide angle X-ray diffraction (WAXD). The sheer induced band texture in the film was found to correspond to the sinusoidal fibrillar microstructure along the shearing direction on the basis of POM and SEM observations. The sinusoidal fibril was found to be lying within the film plane. The model of chitosan molecular orientation in the pre-sheared film with band texture can be established assuming that the main chain orients in the shearing direction and the side group is perpendicular to the shearing direction. The WAXD azimuthal scanning at 2 theta = 20 degrees indicates that the (002) plane orients perpendicular to the shearing direction.
基金jointly supported by the National Key Research and Development Program of China under Grant No. 2017YFC1501601the National Natural Science Foundation of China under Grant Nos. 42175005 and 41875054
文摘In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examined using a Lagrangian trajectory method.Evaporatively forced downdrafts in the outer rainbands can transport low-entropy air downward,resulting in the lowestθ_(e)in the downshear-left boundary layer.Quantitative estimations ofθ_(e)recovery indicate that air parcels,especially those originating from the downshear-left outer core,can gradually revive from a low entropy state through surface enthalpy fluxes as the parcels move cyclonically.As a result,the maximumθ_(e)is observed in the downshear-right quadrant of a highly sheared TC.The trajectory analyses also indicate that parcels that move upward in the outer rainbands and those that travel through the inner core due to shear make a dominant contribution to the midlevel enhancement ofθ_(e)in the downshear-left outer core.In particular,the former plays a leading role in suchθ_(e)enhancements,while the latter plays a secondary role.As a result,moist potential stability occurs in the middle-to-lower troposphere in the downshear-left outer core.
文摘This study proposes an alternative approach to the investigation of high flow hydrogeological fractures within the basement in the Dabakala region of north-central Côte d’Ivoire. The used approach consists of exploring the subsurface by measuring electrical resistivity contrasts along the main shear direction within crystallophyllian rocks. Electrical resistivity profiling and vertical electrical sounding techniques, coupled with boreholes monitoring, have identified fractured aquifers whose best flow rates are around 96 and 116 m<sup>3</sup>/h. These aquifers mostly hosted in granodiorite have an average strength of 10 meters and are located at depth of around 100 meters. They are associated with open fractures created by tangential shear stresses that have affected the Dabakala volcano-sedimentary trench formations. The search for fractured aquifers along the main shear direction offers great perspective for obtaining high flow rates.
基金the National Natural Science Foundation of China(grant No.52078435)the Natural Science Foundation of Sichuan Province(grant No.2023NSFSC0391)the 111 Project(grant No.B21011)and the Leverhulme Trust UK(grant No.PLP-2016-270).
文摘Compacted granular material,integral to geotechnical engineering,undergoes translation,rotation,and interlocking when subject to shear displacements or external loads.The present study focuses on the interlocking of heterogeneous granular materials,a complex behavior influenced by gradation,compaction,and varying particle geometry,and has consequently received limited attention in existing research.To address this research gap,we conducted an analysis on the effect of grain interlocking on the shear resistance of granular assemblies,using a combination of laboratory testing and the discrete element method(DEM).Initially,large-scale direct shear tests were conducted on gravel−sand mixes with varying degrees of compaction and normal pressure.One of the mixes also underwent subsequent shear reversal to explore the differences in grain interlocking between the two shearing processes on the shear plane.After analyzing the laboratory results,a mesoscopic scale investigation was performed by replicating the test using discrete element simulations.To facilitate this,granular particle geometries were measured using 3D laser scanning based on the physical lab tests.Subsequently,based on these scans,discrete element R-block and ball models were utilized to construct both the coarse and fine particles within the mix.Surface vibro-compaction was employed to regulate the degree of compaction.The results indicate that an increase in vertical pressure,coupled with a zero dilatancy angle,results in a rising stress ratio,indicative of grain interlocking.This interlocking exhibits a positive correlation with both the coarse content and the degree of compaction,and varies depending on the shear displacement.As interlocking progresses,the shear band,induced by particle movement,expands and is associated with reduced particle rotation near the shear band.The study further reveals a consistent positive correlation between interlocking and the principal orientation angle of strong normal contact forces,as well as a correlation between interlocking and mobilized contacts.
基金the National Science Council of Taiwan for this work through projects NSC 96-2212-E-008-072 and NSC 95-2221-E-008-135-MY2 are gratefully acknowledged.
文摘Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fractions, velocities, velocity fluctuations and granular temperatures are measured. The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the current simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.