期刊文献+
共找到11,810篇文章
< 1 2 250 >
每页显示 20 50 100
Shear strength and permeability in the sliding zone soil of reservoir landslides:Insights into the seepage-shear coupling effect 被引量:1
1
作者 Qianyun Wang Huiming Tang +3 位作者 Pengju An Kun Fang Biying Zhou Xinping Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2031-2040,共10页
The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and... The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion. 展开更多
关键词 Sliding zone soil Permeability coefficient shear strength Seepage pressure Reservoir landslides
在线阅读 下载PDF
Mechanical properties and enhanced soil shear strength of herbaceous plant roots in the alpine meadow layer of the permafrost region on the Qinghai-Xizang Plateau,China 被引量:1
2
作者 HE Dequan LU Haijing +5 位作者 HU Xiasong WANG Cheng LIU Changyi ZHAO Yingxiao LI Shuaifei DENG Taiguo 《Journal of Arid Land》 2025年第4期515-537,共23页
The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in t... The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in the alpine meadow layer of the permafrost regions on the Qinghai-Xizang Plateau is essential for evaluating their role in enhancing soil shear strength and mitigating slope deformation in these fragile environments.In this study,the roots of four dominant herbaceous plant species—Kobresia pygmaea,Kobresia humilis,Carex moorcroftii,and Leontopodium pusillum—that are widely distributed in the permafrost regions of the Qinghai-Xizang Plateau were explored to determine their mechanical properties and effects in enhancing soil shear strength.Through indoor single root tensile and root group tensile tests,we determined the root diameter,tensile force,tensile strength,tensile ratio,and strength frequency distributions.We also evaluated their contributions to inhibiting slope deformation and failure during the formation and development of thermal thaw slumps in the alpine meadow.The results showed that the distribution of the root diameter of the dominant plant species is mostly normal,while the tensile strength tends to be logarithmically normally distributed.The relationship between the root diameter and root tensile strength conforms to a power function.The theoretical tensile strength of the root group was calculated using the Wu-Waldron Model(WWM)and the Fiber Bundle Model(FBM)under the assumption that the cumulative single tensile strength of the root bundle is identical to the tensile strength of the root group in the WWM.The FBM considers three fracture modes:FBM-D(the tensile force on each single root is proportional to its diameter relative to the total sum of all the root diameters),FBM-S(the cross-sectional stress in the root bundle is uniform),and FBM-N(each tensile strength test of individual roots experiences an equal load).It was found that the model-calculated tensile strength of the root group was 162.60%higher than the test value.The model-derived tensile force of the root group from the FBM-D,FBM-S,and FBM-N was 73.10%,28.91%,and 13.47%higher than the test values,respectively.The additional cohesion of the soil provided by the roots was calculated to be 25.90-45.06 kPa using the modified WWM,67.05-38.15 kPa using the FBM-S,and 57.24-32.74 kPa using the FBM-N.These results not only provide a theoretical basis for further quantitative evaluation of the mechanical effects of the root systems of herbaceous plant species in reinforcing the surface soil but also have practical significance for the effective prevention and control of thermal thaw slumping disasters in the permafrost regions containing native alpine meadows on the Qinghai-Xizang Plateau using flexible plant protection measures. 展开更多
关键词 thaw slumping soil shear strength root-soil composites root tensile force Wu-Waldron Model(WWM) Fiber Bundle Model(FBM) Qinghai-Xizang Plateau
在线阅读 下载PDF
New peak shear strength criterion of rock joints based on two-order roughness
3
作者 HONG Chenjie TAO Zhigang +3 位作者 YANG Shengqi WANG Kai WENG Hanqian HUANG Man 《Journal of Mountain Science》 2025年第5期1859-1870,共12页
The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(seco... The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints. 展开更多
关键词 Rock joint WAVINESS Unevenness Surface roughness Peak shear strength
原文传递
Shear strength behavior of hydrate-bearing sediments under varying dissociation conditions
4
作者 Pan Chen Jiaqiang Xu +6 位作者 Qi Fan Zhenyu Zhu Shuai Feng Yuan Zhou Ying Zheng Dongchuan Xue Changfu Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3819-3832,共14页
Shear strength of hydrate-bearing sediment is an essential parameter for assessing landslide potential ofhydrate reservoirs under exploration conditions. However, the characteristics and simulation of thisshear streng... Shear strength of hydrate-bearing sediment is an essential parameter for assessing landslide potential ofhydrate reservoirs under exploration conditions. However, the characteristics and simulation of thisshear strength under varying dissociation conditions have not been thoroughly investigated. To this end,a series of triaxial compression tests were first carried out on sediments with varying initial hydratesaturations along dissociation pathways. Combining measured data with microscale analysis, the underlyingmechanism for the evolution of shear strength in hydrate-bearing sediment was studied undervarying partial dissociation pathways. Moreover, a shear strength model for hydrate-bearing sedimentwas proposed, taking into account the hydrate saturation and the unhydrated water content. Apart fromthe parameters derived from the hydrate characteristic curve, only one additional model parameter isrequired. The proposed model was validated using measured data on hydrate sediments. The resultsindicate that the proposed model can effectively capture the shear strength behavior of hydrate-bearingsediment under varying dissociation paths. Finally, a sensitivity analysis of the model parameters wasconducted to characterize the proposed model. 展开更多
关键词 shear strength Hydrate-bearing sediment Hydrate saturation Unhydrated water Hydrate dissociation
在线阅读 下载PDF
Evaluation of the treatment variables on the shear strength of loess treated by microbial induced carbonate precipitation
5
作者 CHEN Yang ZHANG Runyan +2 位作者 ZI Jiaojiao HAN Jianyong LIU Kaiwen 《Journal of Mountain Science》 2025年第3期1075-1086,共12页
This study presents an experimental investigation into the effects of microbial induced carbonate precipitation(MICP)treatment factors on the shear behavior of MICP-treated loess soil.Several groups of loess samples w... This study presents an experimental investigation into the effects of microbial induced carbonate precipitation(MICP)treatment factors on the shear behavior of MICP-treated loess soil.Several groups of loess samples were prepared and subjected to MICP treatment with varying cementation reagent concentration,calcium source,and curing duration across three levels.The results indicate that the shear strength of MICP-treated loess achieves optimal performance when treated with the cementation reagent concentration of 1.0 M,cured for 14 days,and using calcium chloride as the calcium source.Compared to untreated loess,the cohesion and internal friction angle increased by approximately 77%and 26%,respectively.To evaluate the influence of these treatment variables,orthogonal analysis was performed on the obtained shear strength parameters.The analysis indicates that the cementation reagent concentration is the primary factor influencing shear strength,followed by the calcium source and curing duration.Additionally,scanning electron microscopy(SEM)tests were performed to investigate the microstructure of the MICP-treated samples.The results reveal that calcium carbonate significantly enhances the loess structure by creating large effective bonding areas,which in turn increases the bridging force.As a result,the overall shear strength of the treated loess shows a marked improvement compared to the untreated samples. 展开更多
关键词 Microbial induced carbonate precipitation(MICP) LOESS Treatment factors shear strength Orthogonal analysis Microstructure
原文传递
Anisotropy characterization of upper shanghai clays: Shear strength and small-strain stiffness
6
作者 Lixin Lan Wenxuan Zhu +2 位作者 Guanlin Ye Qi Zhang Tongshuai Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期493-508,共16页
Comprehensive investigations have been conducted to study the structure and overconsolidation of upper Shanghai clays, i.e. Layers 2–6 clays, typically located at depths of 30–40 m. However, limited information is a... Comprehensive investigations have been conducted to study the structure and overconsolidation of upper Shanghai clays, i.e. Layers 2–6 clays, typically located at depths of 30–40 m. However, limited information is available on their anisotropy, and even less is known about the correlation between structure, overconsolidation, and anisotropy. In this study, the undrained anisotropy characteristics of shear strength and small-strain shear stiffness in upper Shanghai Layers 2–6 clays were thoroughly assessed using a series of K0-consolidated undrained triaxial compression (TC) and triaxial extension (TE) tests (K0 is the coefficient of lateral earth pressure at rest). The effective stress paths, shear strength, and small-strain shear stiffness from the undrained TC and TE tests demonstrate the anisotropic behaviors in upper Shanghai clays. Analyses of data from upper Shanghai clays and other clays worldwide indicate that the shear strength anisotropy ratio (Ks) converges at 0.8 as the overconsolidation ratio (OCR) and plasticity index (Ip) increase, while the small-strain shear stiffness anisotropy ratio (Re) converges at 1.0. The influence of OCR on Ks and Re is more pronounced than that of Ip and sensitivity (St). Nevertheless, no clear correlation between Ks and Re is observed in upper Shanghai clays. 展开更多
关键词 Shanghai clays ANISOTROPY shear strength Small-strain stiffness
在线阅读 下载PDF
Characteristic Shear Strength Parameters Derived from Cone Penetration Test
7
作者 Erdi Myftaraga Olsi Koreta 《Journal of Civil Engineering and Architecture》 2025年第3期148-156,共9页
The interpretation and application of CPT(cone penetration test)results is characterized by considerable variability of data,either in measured or correlated parameters.According to the requirements of Eurocode 7 the ... The interpretation and application of CPT(cone penetration test)results is characterized by considerable variability of data,either in measured or correlated parameters.According to the requirements of Eurocode 7 the existing variability in soil properties has to be taken into account statistically during the determination of the characteristic values of each parameter.This should be done by selecting a cautious estimate of the value affecting the limit state.Obtaining the characteristic values of CPT measurements is not an easy task and on this aspect nor clear neither unified guidelines exist.This paper focuses in several approaches to characterize the cone resistance and the sleeve friction using simple statistical analysis,in order for these parameters to be applicable in design.Similar procedures are then applied to determine the characteristic values of correlated parameters from CPT such as the effective friction angle for sands and the undrained shear strength for clays.The resulting characteristic values of the considered parameters emphasize the fact that the prediction and the interpretation of characteristic values of soil properties is a complicated and biased procedure. 展开更多
关键词 Eurocode 7 CPTu(piezocone test) characteristic value friction angle undrained shear strength
在线阅读 下载PDF
Discussion of“Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network”[J.Mt.Sci.21(9):3108–3122]
8
作者 Amin SOLTANI Brendan C.O’KELLY 《Journal of Mountain Science》 2025年第7期2723-2730,共8页
This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial... This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications. 展开更多
关键词 Undrained shear strength Liquidity index Soil consistency Non-linear regression
原文传递
Measurement of unsaturated soil shear strength through drainedvented triaxial tests
9
作者 Yuxin Zhao Xu Li Li Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5709-5727,共19页
This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)tr... This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)triaxial test method,the present study investigated the shear strength behavior of silty clay under various shear rates and water saturation levels,and compared the outcomes with traditional suction-controlled(SC)and constant water content(CW)tests.The findingshighlight the pivotal role of excess pore water pressure dissipation during shearing,which significantlyaffects the shear strength of both saturated and unsaturated soils.Notably,for soils with high initial water saturation,a decrease in shear strength is observed with an increase in shear rate,which is attributed to the rise in pore water pressure.Conversely,for soils with low initial water saturation,the shear rate exhibits minimal impact on shear strength due to negligible water drainage.The research delineates the optimal shear rates for DV tests based on the initial water saturation:a slower rate of 0.0028 mm/min for samples with high water saturation(S_(r0)>66%)and a faster rate of 0.8 mm/min for samples with low water saturation(S_(r0)≤66%).A novel testing methodology for determining unsaturated soil shear strength under DV conditions is introduced,streamlining the measurement process and significantly reducing testing time.This method not only promises substantial cost savings but also aligns closely with natural engineering conditions,offering valuable guidance for geotechnical applications. 展开更多
关键词 Unsaturated soils shear strength shear rate Drained-vented(DV)triaxial test Silty clay Rapid measurement method
在线阅读 下载PDF
Revisiting scale effect on joint roughness coefficient and shear strength considering sampling methods and geometric characteristics
10
作者 Qing Lü Xueheng Cai +2 位作者 Luxiang Wu Jun Zheng Bo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2843-2856,共14页
The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear s... The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear strength of rock joints.Compared to the shear tests,using the joint roughness coefficient(JRC)and its roughness parameters offers a more convenient method for describing the scale effect on shear strength.However,it is crucial to understand that the scale effect mechanisms of JRC are distinct from those of shear strength.Therefore,this paper aims to clarify these distinct mechanisms.By digitally extracting roughness parameters from granite samples,it is found that the scale effect of roughness parameters mainly comes from the sampling methods and the geometric characteristics of parameters.Furthermore,a full data sampling method considering heterogeneity is proposed to obtain more representative roughness parameters.To reveal the scale effect mechanisms of shear strength,Gaussian filtering is firstly used to separate the waviness and unevenness components of roughness,facilitating a deeper understanding of the geometric characteristics of roughness.It is suggested that the wavelength of the waviness component can reflect the scale effect on shear strength.Secondly,numerical simulations of ideal artificial joint models are conducted to validate that the wavelength of the waviness component serves as the dividing point between positive and negative scale effects.The mechanical mechanisms of positive and negative scale effects are also interpreted.Finally,these mechanisms successfully elucidate the occurrence patterns of the scale effect on natural joint profiles. 展开更多
关键词 Rock joint Joint roughness coefficient(JRC) shear strength Scale effect
在线阅读 下载PDF
Contribution of reforestation to soil aggregate stability and shear strength in hilly red soil region of southern China
11
作者 ZHU Jinqi ZHANG Na +3 位作者 JIANG Yihui WANG Dan Glenn WILSON ZHENG Bofu 《Journal of Mountain Science》 2025年第7期2497-2511,共15页
In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear str... In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear strength are indicators that reflect soil resistance to erosion and its ability to prevent shallow landslides,respectively.However,limited research has focused on the response of soil aggregate stability and shear strength to reforestation.We selected three types of reforestations(Phyllostachys edulis forest,Cunninghamia lanceolata(Lamb.)Hook.forest,Citrus sinensis(L.)Osbeck.orchard),a natural forest(mixed coniferous and broadleaf forests),and a fallow land as study plots,and measured root traits,and soil physicochemical traits,i.e.,pH,soil organic matter(SOC),Soil water content(SWC),soil bulk density(BD),soil cohesion(c),soil internal friction angle(φ)and analyzed their multiple interactions.The soil aggregate stability traits,refer to the mean weight diameter(MWD)and geometric mean diameter(GMD),exhibited a significant increase in reforested plots,approximately 200%compared to fallow land and 50%compared to natural forests.For soil shear strength the values were approximately 20%higher than in fallow land and approximately 10%lower than in natural forests.Soil aggregate stability and soil shear strength did not exhibit a significant positive correlation across all plots,and the underlying drivers of these traits were variable.For instance,in natural forest and timber stands,soil aggregate stability was mainly influenced by soil organic carbon,while soil shear strength was primarily affected by root length density.In economic forest,aggregate stability and shear strength are mainly affected by organic carbon.Overall,we found that vegetation restoration enhances soil erosion resistance,however,the primary drivers for the improvement of aggregate stability(soil organic carbon)and shear strength(root length density)are different.Therefore,in future benefit assessments of vegetation restoration projects aimed at soil erosion control,different indicators should be considered based on specific conditions. 展开更多
关键词 Vegetation reforestation Soil aggregate stability Soil shear strength Root length density
原文传递
Improving the interpretation of undrained shear strength from piezocone penetration tests by integrating soil physical properties using a hybrid meta-heuristic algorithm
12
作者 Meng Wu Zening Zhao Guojun Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3180-3197,共18页
Conventional empirical equations for estimating undrained shear strength(s_(u))from piezocone penetration test(CPTu)data,without incorporating soil physical properties,often lack the accuracy and robustness required f... Conventional empirical equations for estimating undrained shear strength(s_(u))from piezocone penetration test(CPTu)data,without incorporating soil physical properties,often lack the accuracy and robustness required for geotechnical site investigations.This study introduces a hybrid virus colony search(VCS)algorithm that integrates the standard VCS algorithm with a mutation-based search mechanism to develop high-performance XGBoost learning models to address this limitation.A dataset of 372 seismic CPTu and corresponding soil physical properties data from 26 geotechnical projects in Jiangs_(u)Province,China,was collected for model development.Comparative evaluations demonstrate that the proposed hybrid VCS-XGBoost model exhibits s_(u)perior performance compared to standard meta-heuristic algorithm-based XGBoost models.The res_(u)lts highlight that the consideration of soil physical properties significantly improves the predictive accuracy of s_(u),emphasizing the importance of considering additional soil information beyond CPTu data for accurate s_(u)estimation. 展开更多
关键词 Undrained shear strength Piezocone penetration test Extreme gradient boosting Meta-heuristic algorithm
在线阅读 下载PDF
Explainable artificial intelligence model for the prediction of undrained shear strength
13
作者 Ho-Hong-Duy Nguyen Thanh-Nhan Nguyen +3 位作者 Thi-Anh-Thu Phan Ngoc-Thi Huynh Quoc-Dat Huynh Tan-Tai Trieu 《Theoretical & Applied Mechanics Letters》 2025年第3期284-295,共12页
Machine learning(ML)models are widely used for predicting undrained shear strength(USS),but interpretability has been a limitation in various studies.Therefore,this study introduced shapley additive explanations(SHAP)... Machine learning(ML)models are widely used for predicting undrained shear strength(USS),but interpretability has been a limitation in various studies.Therefore,this study introduced shapley additive explanations(SHAP)to clarify the contribution of each input feature in USS prediction.Three ML models,artificial neural network(ANN),extreme gradient boosting(XGBoost),and random forest(RF),were employed,with accuracy evaluated using mean squared error,mean absolute error,and coefficient of determination(R^(2)).The RF achieved the highest performance with an R^(2) of 0.82.SHAP analysis identified pre-consolidation stress as a key contributor to USS prediction.SHAP dependence plots reveal that the ANN captures smoother,linear feature-output relationships,while the RF handles complex,non-linear interactions more effectively.This suggests a non-linear relationship between USS and input features,with RF outperforming ANN.These findings highlight SHAP’s role in enhancing interpretability and promoting transparency and reliability in ML predictions for geotechnical applications. 展开更多
关键词 Prediction of undrained shear strength Explanation model Shapley additive explanation model Explainable AI
在线阅读 下载PDF
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion 被引量:10
14
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure shear strength
在线阅读 下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
15
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 Concrete dam Buttress dam SLIDING shear strength Concrete-rock interface Asperity inclination Asperity location
在线阅读 下载PDF
Optimizing profile line interval for enhanced accuracy in rock joint morphology and shear strength assessments 被引量:1
16
作者 Leibo Song Quan Jiang +5 位作者 Shigui Du Jiamin Song Gang Wang Yanting Gu Xingkai Wang Jinzhong Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期587-608,共22页
2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength asses... 2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength assessments. A detailed study of 45 joint samples using four statistical measures across 500 different ΔI_(L)values identified a clear line interval effect with two stages: stable and fluctuation-discrete.Further statistical analysis showed a linear relationship between the error bounds of four parameters,shear strength evaluation, and their corresponding maximum ΔI_(L)values, where the gradient k of this linear relationship was influenced by the basic friction angle and normal stress. Accounting for these factors,lower-limit linear models were employed to determine the optimal ΔI_(L)values that met error tolerances(1%–10%) for all metrics and shear strength. The study also explored the consistent size effect on joints regardless of ΔI_(L)changes, revealing three types of size effects based on morphological heterogeneity.Notably, larger joints required generally higher ΔI_(L)to maintain the predefined error limits, suggesting an increased interval for large joint analyses. Consequently, this research provides a basis for determining the optimal ΔI_(L), improving accuracy in 2D profile line assessments of joint characteristics. 展开更多
关键词 Rock joint ROUGHNESS shear strength Size effect Profile line interval effect
在线阅读 下载PDF
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network 被引量:1
17
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression Artificial neural networks Fuzzy logic
原文传递
Field testing of shear strength of granite residual soils 被引量:1
18
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
在线阅读 下载PDF
Study on Shear Strength Characteristics of Basalt-Concrete Bonding Interface Based on in-situ Direct Shear Test 被引量:1
19
作者 Peng Xia Xinli Hu +5 位作者 Chunye Ying Shuangshuang Wu Chu Xu Xuan Wang Hao Chen Hang Duan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期553-567,共15页
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets... In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%. 展开更多
关键词 direct shear test basalt-concrete bonding interface shear strength parameters engineering geogolgy
原文传递
Study on time effect and prediction model of shear strength of root-soil complex under dry-wet cycle 被引量:1
20
作者 Zhengjun Mao Xu Ma +4 位作者 Yuncen Liu Mimi Geng Yanshan Tian Jiewen Sun Zhijie Yang 《Biogeotechnics》 2024年第2期54-67,共14页
Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strengt... Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strength index and deformation index of the alfalfa root-loess complex under dry-wet cycles.Additionally,the time effect of the shear strength index of the alfalfa root-loess complex under dry-wet cycles was analyzed and its prediction model was proposed.The results show that the PG-DWC(dry-wet cycle caused by plant water management during plant growth period)causes the peak strength of plain soil to change in a"V"shape with the increase of growth period,and the peak strength of alfalfa root-loess complex is higher than that of plain soil at the same growth period.The deterioration of the peak strength of alfalfa root-loess complex in the same growth period is aggravated with the increase of drying and wetting cycles.Compared with the 0 days growth period,the effective cohesion of alfalfa root-loess complex under different dry-wet cycles maximum increase rate is at the 180 days,which are 33.88%,46.05%,30.12%and 216.02%,respectively.When the number of dry-wet cycles is constant,the effective cohesion of the alfalfa root-loess complex overall increases with the growth period.However,it gradually decreases comparedwith the previous growth period,and the minimum increase rate are all at the 180 days.For the same growth period,the effective cohesion of the alfalfa root-loess complex decreases with the increase of the number of dry-wet cycles.This indicates that EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain)have a detrimental effect on the time effect of the shear strength of the alfalfa root-loess complex.Finally,based on the formula of total deterioration,a prediction model for the shear strength of the alfalfa root-loess complex under dry-wet cycles was proposed,which exhibits high prediction accuracy.The research results provide useful guidance for the understanding of mechanical behavior and structural damage evolution of root-soil composite. 展开更多
关键词 Dry-wet cycle Root-soil complex shear strength Time effect Prediction model AlfalfaLoess
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部