Several aspects of the Liaodong Paleoproterozioc fold belt, including its components, tectonic, metamorphic and magmatic characteristics are discussed in the paper, with emphasis on the asymmetry of the fold belt and ...Several aspects of the Liaodong Paleoproterozioc fold belt, including its components, tectonic, metamorphic and magmatic characteristics are discussed in the paper, with emphasis on the asymmetry of the fold belt and differences between the northern lineal-fold belt and the southern dome-fold belt. It is suggested that the fold belt is one magmatic passive margin, instead of a rift zone or the classical passive continental margin. The formation and evolution of the fold belt is dis- cussed with a simple shear model, which may best explain the co-existence of contemporaneous tectonic facies with different characteristics, the volcanic and plutonic activities, sedimentary formations and their geological attributes etc.展开更多
A novel shear damage model based on homogenization theory and a modified Mohr-Coulomb criterion is proposed to predict the full deformation process of gas hydrate-bearing sediments(GHBSs)during shearing by analyzing m...A novel shear damage model based on homogenization theory and a modified Mohr-Coulomb criterion is proposed to predict the full deformation process of gas hydrate-bearing sediments(GHBSs)during shearing by analyzing micro-mechanisms of shear deformation and failure characteristics.Then,the physical significance of the model's parameters is explored.Finally,the damage evolution and shear stress partition inside GHBSs during the shearing process are analyzed in detail.The results show that model parameters have clear physical meaning,and the shear damage model is capable of reflecting the nonlinear deformation and strain softening characteristics of GHBSs due to its ability to better describe the damage evolution and shear stress partition mechanisms inside GHBSs during the shearing process.Comparisons of experimental and theoretical results show that the global performance of the novel shear damage model is satisfactory.The model is expected to be widely adopted to analyze submarine landslide instability due to hydrate dissociation.展开更多
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization...In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.展开更多
Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2)...Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2) there are also no models that include an acceleration stage. This paper presents an improved Burgers constitutive model with the addition of a damage parameter to characterize the moisture effect and uses a nonlinear relation equation between stress and strain for inclusion as the acceleration stage. The damage parameter is determined from granite creep experiment under four different moisture contents(0%, 0.22%, 0.49%, and 0.79%). The nonlinear relation equation is obtained by fitting a dataset of stain versus time under five different loading stages. To verify the presented model, a creep experiment was conducted on other granite samples and the results show that the model agrees well with the experimental observation data.展开更多
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e...The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.展开更多
Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the ...Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties...The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.展开更多
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf...The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering.展开更多
By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain a...By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.展开更多
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t...A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).展开更多
The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maok...The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.展开更多
The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mecha...The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack' was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.展开更多
The linear evolution of a resistive wall mode(RWM)with magnetic shears was analytically studied in a cylindrical geometry.The incompressible magnetohydrodynamic(MHD)equations were solved by the Fourier analysis method...The linear evolution of a resistive wall mode(RWM)with magnetic shears was analytically studied in a cylindrical geometry.The incompressible magnetohydrodynamic(MHD)equations were solved by the Fourier analysis method,and various equilibrium magnetic fields were considered.The shear in the magnetic field had an unstable effect on the linear evolution of the RWM.The linear growth rate increased obviously with increase of the magnetic shear rate for higher magnetic shears.Slow plasma rotation could stabilize the RWM with low magnetic shears,but the plasma rotation could not stabilize the RWM with high magnetic shears.The stabilizing effects of the wall conductivity on the RWM are more efficient for lager magnetic shear.展开更多
The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicte...The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research. In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account, the test rig is designed. The outlet oil temperature is measured and fitted with different rotation speed, oil film thickness, oil flow rate, and inlet oil temperature. Meanwhile, the film torque can be obtained. Based on Navier-Stokes equations and the continuity equation, the mathematical model of fluid torque is proposed in cylindrical coordinate. Iterative method is employed to solve the equations. The radial and tangential speed distribution, radial pressure distribution and theoretical flow rate are determined and analyzed. The models of equivalent radius and fluid torque of friction pairs are introduced. The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc. However, the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed. The oil film fills the clearance and the film torque increases with increasing rotating speed. However, when the speed reaches a certain value, the centrifugal force will play an important role on the fluid distribution. The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow, so the film starts to shrink which decreases the film torque sharply. The theoretical fluid torque has good agreement with the experimental data. This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately.展开更多
According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully esta...According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.展开更多
The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process...The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process parameters on shear stress of Sn-15 Pb alloy during rheo-rolling process were studied. In rolling cavity, the nearer the roll is, the bigger the velocity and shear stress are. The shear stress increases with the increment of the roll speed and the roll radius during rheo-rolling process, but deceases with the increment of the thickness of the strip. When the solid fraction of Sn-15 Pb alloy increases from 0.3 to 0.5, the shear stress increases slowly, but when the solid fraction increases from 0.5 to 0.6, the shear stress rapidly.展开更多
A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at ...A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.展开更多
Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to ...Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to describe such two kinds of size effects on the yield strength is a very practical challenge.In this study,according to experimental observations,a collinear micro-shear-bands model is proposed to explore these size effects on metal materials’yield strength.An analytical solution for the simple model is derived.It reveals that the yield strength is a function of average grain-size or precipitate-size,which is able to reasonably explain size effects on yield strength.The typical example validation shows that the new relationship is not only able to precisely describe the grain-size effect in some cases,but also able to theoretically address the unexplained Hall-Petch relationship between theprecipitate size and the yield strength of nickel-based superalloys.展开更多
基金The paper is partly funded by the NNSFC project NO, 49872071
文摘Several aspects of the Liaodong Paleoproterozioc fold belt, including its components, tectonic, metamorphic and magmatic characteristics are discussed in the paper, with emphasis on the asymmetry of the fold belt and differences between the northern lineal-fold belt and the southern dome-fold belt. It is suggested that the fold belt is one magmatic passive margin, instead of a rift zone or the classical passive continental margin. The formation and evolution of the fold belt is dis- cussed with a simple shear model, which may best explain the co-existence of contemporaneous tectonic facies with different characteristics, the volcanic and plutonic activities, sedimentary formations and their geological attributes etc.
基金supported by the Independent Innovation Research Program of China University of Petroleum(East China)(No.27RA2215005)。
文摘A novel shear damage model based on homogenization theory and a modified Mohr-Coulomb criterion is proposed to predict the full deformation process of gas hydrate-bearing sediments(GHBSs)during shearing by analyzing micro-mechanisms of shear deformation and failure characteristics.Then,the physical significance of the model's parameters is explored.Finally,the damage evolution and shear stress partition inside GHBSs during the shearing process are analyzed in detail.The results show that model parameters have clear physical meaning,and the shear damage model is capable of reflecting the nonlinear deformation and strain softening characteristics of GHBSs due to its ability to better describe the damage evolution and shear stress partition mechanisms inside GHBSs during the shearing process.Comparisons of experimental and theoretical results show that the global performance of the novel shear damage model is satisfactory.The model is expected to be widely adopted to analyze submarine landslide instability due to hydrate dissociation.
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
基金financed by the Research Foundation of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(Grant No.2020KDZ05)the National Natural Science Foundation of China(Grant Nos.42077239,41702378)。
文摘In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.
基金supported by the National Natural Science Foundation of China (No. 41172281)the National Basic Research Program of China (No. 2011CB710604)the Opening Foundation of the State Key Laboratory of Continental Dynamics, Northwest University (No. 201210126)
文摘Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2) there are also no models that include an acceleration stage. This paper presents an improved Burgers constitutive model with the addition of a damage parameter to characterize the moisture effect and uses a nonlinear relation equation between stress and strain for inclusion as the acceleration stage. The damage parameter is determined from granite creep experiment under four different moisture contents(0%, 0.22%, 0.49%, and 0.79%). The nonlinear relation equation is obtained by fitting a dataset of stain versus time under five different loading stages. To verify the presented model, a creep experiment was conducted on other granite samples and the results show that the model agrees well with the experimental observation data.
文摘The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.
基金the EU project(INCO-Compernicus,ERBIC 15 CT970706)Research Foundation for Youth Scientist of Northeastern University,Shenyang,china(856049)
文摘Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions
基金funded by the State Key Development Program for Basic Research of China(No.2013CB227900)the Joint Funds of the National Natural Science Foundation of China(NoU1261201)Prof.Mao Xianbiao for his valuable assistance in the preparation of manuscript
文摘The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.
文摘The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering.
基金Project(2004F052) supported by the Education Department of Liaoning Province,China
文摘By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.
基金Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828
文摘A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).
基金supported by the National Natural Science Foundation of China(Grant No.41521001)the Natural Science Foundation of Hubei Province(Grant No.2018CFB385)
文摘The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.
基金the EU project(INCO-Copernicus,ERBIC 15 CT970706)Research Foundation for Youth Scientist of Northeastern University,Shenyang China(856049)
文摘The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto^plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack' was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.
基金National Science Foundation of Shangong Province of China(No.ZR2016AM30)National Natural Science Foundation of China(No.11875290)Foundation of Shandong Province Higher Educational Science and Technology Program,China(No.J15LN15)
文摘The linear evolution of a resistive wall mode(RWM)with magnetic shears was analytically studied in a cylindrical geometry.The incompressible magnetohydrodynamic(MHD)equations were solved by the Fourier analysis method,and various equilibrium magnetic fields were considered.The shear in the magnetic field had an unstable effect on the linear evolution of the RWM.The linear growth rate increased obviously with increase of the magnetic shear rate for higher magnetic shears.Slow plasma rotation could stabilize the RWM with low magnetic shears,but the plasma rotation could not stabilize the RWM with high magnetic shears.The stabilizing effects of the wall conductivity on the RWM are more efficient for lager magnetic shear.
基金supported by National Natural Science Foundation of China(Grant No.51275039)
文摘The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research. In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account, the test rig is designed. The outlet oil temperature is measured and fitted with different rotation speed, oil film thickness, oil flow rate, and inlet oil temperature. Meanwhile, the film torque can be obtained. Based on Navier-Stokes equations and the continuity equation, the mathematical model of fluid torque is proposed in cylindrical coordinate. Iterative method is employed to solve the equations. The radial and tangential speed distribution, radial pressure distribution and theoretical flow rate are determined and analyzed. The models of equivalent radius and fluid torque of friction pairs are introduced. The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc. However, the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed. The oil film fills the clearance and the film torque increases with increasing rotating speed. However, when the speed reaches a certain value, the centrifugal force will play an important role on the fluid distribution. The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow, so the film starts to shrink which decreases the film torque sharply. The theoretical fluid torque has good agreement with the experimental data. This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately.
基金Supported by the National tenth-five Key Technologies R&D Programme (ZZ01-13A-03-03-04) .
文摘According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.
基金Funded by National Natural Science Foundation for Outstanding Young Scholars of China(No.51222405)National Natural Science Foundation of China(No.51474063)
文摘The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process parameters on shear stress of Sn-15 Pb alloy during rheo-rolling process were studied. In rolling cavity, the nearer the roll is, the bigger the velocity and shear stress are. The shear stress increases with the increment of the roll speed and the roll radius during rheo-rolling process, but deceases with the increment of the thickness of the strip. When the solid fraction of Sn-15 Pb alloy increases from 0.3 to 0.5, the shear stress increases slowly, but when the solid fraction increases from 0.5 to 0.6, the shear stress rapidly.
基金supported by NUS Academic Research Fund (R-263-000-483-112)
文摘A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.
基金supported by the National Natural Science Foundation of China (41630634)the China Postdoctoral Science Foundation (2017M623213)
文摘Numerous experimental evidences show that the grain size may significantly alter the yield strength of metals.Similarly,innickel-based superalloys,the precipitate size also influences their yield strength.Then,how to describe such two kinds of size effects on the yield strength is a very practical challenge.In this study,according to experimental observations,a collinear micro-shear-bands model is proposed to explore these size effects on metal materials’yield strength.An analytical solution for the simple model is derived.It reveals that the yield strength is a function of average grain-size or precipitate-size,which is able to reasonably explain size effects on yield strength.The typical example validation shows that the new relationship is not only able to precisely describe the grain-size effect in some cases,but also able to theoretically address the unexplained Hall-Petch relationship between theprecipitate size and the yield strength of nickel-based superalloys.