A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves...A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.展开更多
Recently,the Fog-Radio Access Network(F-RAN)has gained considerable attention,because of its flexible architecture that allows rapid response to user requirements.In this paper,computational offloading in F-RAN is con...Recently,the Fog-Radio Access Network(F-RAN)has gained considerable attention,because of its flexible architecture that allows rapid response to user requirements.In this paper,computational offloading in F-RAN is considered,where multiple User Equipments(UEs)offload their computational tasks to the F-RAN through fog nodes.Each UE can select one of the fog nodes to offload its task,and each fog node may serve multiple UEs.The tasks are computed by the fog nodes or further offloaded to the cloud via a capacity-limited fronhaul link.In order to compute all UEs'tasks quickly,joint optimization of UE-Fog association,radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs.This min-max problem is formulated as a Mixed Integer Nonlinear Program(MINP).To tackle it,first,MINP is reformulated as a continuous optimization problem,and then the Majorization Minimization(MM)method is used to find a solution.The MM approach that we develop is unconventional in that each MM subproblem is solved inexactly with the same provable convergence guarantee as the exact MM,thereby reducing the complexity of MM iteration.In addition,a cooperative offloading model is considered,where the fog nodes compress-and-forward their received signals to the cloud.Under this model,a similar min-max latency optimization problem is formulated and tackled by the inexact MM.Simulation results show that the proposed algorithms outperform some offloading strategies,and that the cooperative offloading can exploit transmission diversity better than noncooperative offloading to achieve better latency performance.展开更多
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements o...In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.展开更多
Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transit...Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transition from intention to action is challenging-a situation that has important public health implications. According to the World Health Organization,^(5)1 person dies every 6 s worldwide from causes related to physical inactivity, which underscores the urgency of addressing this situation.展开更多
We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we ...We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.展开更多
Carpooling is a sustainable,economical,and environmentally friendly solution to reduce air pollution and ease traffic congestion in urban areas.However,existing regret theories lack consideration of the heterogeneity ...Carpooling is a sustainable,economical,and environmentally friendly solution to reduce air pollution and ease traffic congestion in urban areas.However,existing regret theories lack consideration of the heterogeneity of attribute perception in different ways and the psychological factors that affect regret,so they cannot accurately portray urban residents’carpool travel decisions and cannot provide a correct explanation of the actual carpool choice behavior.In this paper,based on the analysis of classical random regret minimization models and random regret minimization models considering heterogeneity,the concept of psychological distance is introduced to address shortcomings of the existing models and construct an improved random regret minimization model considering heterogeneity and psychological distance.The results show that the fit and explanatory effect of the improved model proposed in this paper is better than that of the other two models.The psychological distance of travel residents during the Corona Virus Disease 2019(COVID-19)affects the anticipated regret value and the willingness to carpool.The model can better describe the carpool travel choice mechanism of travelers and effectively explain the carpool travel choice behavior of travelers.展开更多
Impulse noise removal is an important task in image restoration.In this paper,we introduce a general nonsmooth nonconvex model for recovering images degraded by blur and impulsive noise,which can easily include some p...Impulse noise removal is an important task in image restoration.In this paper,we introduce a general nonsmooth nonconvex model for recovering images degraded by blur and impulsive noise,which can easily include some prior information,such as box constraint or low rank,etc.To deal with the nonconvex problem,we employ the proximal linearized minimization algorithm.For the subproblem,we use the alternating direction method of multipliers to solve it.Furthermore,based on the assumption that the objective function satisfies the KurdykaLojasiewicz property,we prove the global convergence of the proposed algorithm.Numerical experiments demonstrate that our method outperforms both the l1TV and Nonconvex TV models in terms of subjective and objective quality measurements.展开更多
Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective man...Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective management performance of municipal solid waste management underscores the interdisciplinarity strategies. Such knowledge and skills are paramount to uncover the sources of waste generation as well as means of waste storage, collection, recycling, transportation, handling/treatment, disposal, and monitoring. This study was conducted in Dar es Salaam city. Driven by the curiosity model of the solid waste minimization performance at source, study data was collected using focus group discussion techniques to ward-level local government officers, which was triangulated with literature and documentary review. The main themes of the FGD were situational factors (SFA) and local government by-laws (LGBY). In the FGD session, sub-themes of SFA tricked to understand how MSW minimization is related to the presence and effect of services such as land use planning, availability of landfills, solid waste transfer stations, material recovery facilities, incinerators, solid waste collection bins, solid waste trucks, solid waste management budget and solid waste collection agents. Similarly, FGD on LGBY was extended by sub-themes such as contents of the by-law, community awareness of the by-law, and by-law enforcement mechanisms. While data preparation applied an analytical hierarchy process, data analysis applied an ordinary least square (OLS) regression model for sub-criteria that explain SFA and LGBY;and OLS standard residues as variables into geographically weighted regression with a resolution of 241 × 241 meter in ArcMap v10.5. Results showed that situational factors and local government by-laws have a strong relationship with the rate of minimizing solid waste dumping in water bodies (local R square = 0.94).展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for ...BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.展开更多
BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery ...BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.展开更多
Given two ideals I and J of a commutative ring R,there are two extreme connections between I and J:I+J=R and I∩J={0}.For the former case,graphs whose vertices are defined as the proper ideals of R and that two vertic...Given two ideals I and J of a commutative ring R,there are two extreme connections between I and J:I+J=R and I∩J={0}.For the former case,graphs whose vertices are defined as the proper ideals of R and that two vertices are adjacent if and only if their sum is the whole ring R are known as co-maximal ideal graphs.In this paper,we introduce a new kind of graph structure on R,called co-minimal ideal graph,according to the second case:Its vertices are the nonzero ideals of R and two vertices are adjacent if and only if their intersection is zero.Some important graph parameters(including girth,diameter,clique number and chromatic number)and graph structures(including tree and bipartite graph)of co-minimal ideal graphs over finite commutative rings are studied.In particular,we show that the co-maximal ideal graph and the co-minimal ideal graph over R are isomorphic if and only if the number of maximal ideals of R and the number of minimal ideals of R coincide.展开更多
In this paper,we use the solution of the even functional Minkowski problem to show that there is a minimizing affine Minkowski total variation of the function of bounded variation.Moreover,for the Minkowski total vari...In this paper,we use the solution of the even functional Minkowski problem to show that there is a minimizing affine Minkowski total variation of the function of bounded variation.Moreover,for the Minkowski total variation,we use the method of convexation to establish the same conclusion as the convex body space.展开更多
The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the p...The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.展开更多
The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional...The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional factors in its pathogenesis.The application of therapeutic drugs relies on understanding the cascade of molecular events to determine their efficacy in managing the clinical condition.展开更多
Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades.The application of biomaterials has become an inextricable part of treatment for new bone formation and regene...Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades.The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration.Different from traditional bone-regeneration materials,injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach.In this review,we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis,with a focus on injectable biomaterials for various applications in the orthopedic field.More specifically,bioceramics and polymeric materials,together with their applications in bone fracture healing,vertebral body augmentation,bone implant fixation,bone tumor therapy,and bone-defect-related infection treatment are reviewed in detail.Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed.Finally,we summarize the challenges in this field and future directions for clinical treatment.展开更多
We construct an infinite family of minimal linear codes over the ring F_(2)+u F_(2).These codes are defined through trace functions and Boolean functions.Their Lee weight distribution is completely computed by Walsh t...We construct an infinite family of minimal linear codes over the ring F_(2)+u F_(2).These codes are defined through trace functions and Boolean functions.Their Lee weight distribution is completely computed by Walsh transformation.By Gray mapping,we obtain a family of minimal binary linear codes from a generic construction,which have prominent applications in secret sharing and secure two-party computation.展开更多
Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularl...Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularly lumbosacral plexus.The introduction of minimally invasive surgical approaches,such as the lateral rectus approach,not only contributes to preserving lumbar plexus integrity in operated patients but also positively impacts their psychological well-being.Patients treated by surgical reduction of pelvic fractures with lumbosacral plexus injury often experience states of anxiety and depression.The lateral rectus approach is associated with lower levels of anxiety and depression compared to more invasive surgical techniques used for similar fractures.展开更多
The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits ...The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects.展开更多
基金supported by the Scientific and Technological Developing Scheme of Jilin Province,China(No.20240101371JC)the National Natural Science Foundation of China(No.62107008).
文摘A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.
基金supported in part by the Natural Science Foundation of China (62171110,U19B2028 and U20B2070)。
文摘Recently,the Fog-Radio Access Network(F-RAN)has gained considerable attention,because of its flexible architecture that allows rapid response to user requirements.In this paper,computational offloading in F-RAN is considered,where multiple User Equipments(UEs)offload their computational tasks to the F-RAN through fog nodes.Each UE can select one of the fog nodes to offload its task,and each fog node may serve multiple UEs.The tasks are computed by the fog nodes or further offloaded to the cloud via a capacity-limited fronhaul link.In order to compute all UEs'tasks quickly,joint optimization of UE-Fog association,radio and computation resources of F-RAN is proposed to minimize the maximum latency of all UEs.This min-max problem is formulated as a Mixed Integer Nonlinear Program(MINP).To tackle it,first,MINP is reformulated as a continuous optimization problem,and then the Majorization Minimization(MM)method is used to find a solution.The MM approach that we develop is unconventional in that each MM subproblem is solved inexactly with the same provable convergence guarantee as the exact MM,thereby reducing the complexity of MM iteration.In addition,a cooperative offloading model is considered,where the fog nodes compress-and-forward their received signals to the cloud.Under this model,a similar min-max latency optimization problem is formulated and tackled by the inexact MM.Simulation results show that the proposed algorithms outperform some offloading strategies,and that the cooperative offloading can exploit transmission diversity better than noncooperative offloading to achieve better latency performance.
基金supported in part by the National Science Foundation of China(Grant No.62172450)the Key R&D Plan of Hunan Province(Grant No.2022GK2008)the Nature Science Foundation of Hunan Province(Grant No.2020JJ4756)。
文摘In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.
基金supported by The Shenzhen Educational Research Funding(zdzb2014)The Shenzhen Science and Technology Innovation Commission(202307313000096)+4 种基金The Social Science Foundation from the China's Ministry of Education(23YJA880093)The Post-Doctoral Fellowship(2022M711174)The National Center for Mental Health(Z014)BC is supported by the Chaires de recherche Rennes Métropole(23C 0909)SM is supported by the National Insti-tutes of Health(R01AG72445).
文摘Today, most people know that physical activity(PA) is beneficial for their health ^(1,2)and aspire to engage in regular PA.^(3,4)However, despite their awareness of the importance of PA, it is evident that the transition from intention to action is challenging-a situation that has important public health implications. According to the World Health Organization,^(5)1 person dies every 6 s worldwide from causes related to physical inactivity, which underscores the urgency of addressing this situation.
基金supported by the National Natural Science Foundation of China“Variable exponential function spaces on variable anisotropic Euclidean spaces and their applications”(12261083),“Harmonic analysis on affine symmetric spaces”(12161083).
文摘We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.
基金the National Natural Science Foundation of China(No.52062026)the Educational Commission of Gansu Province of China(No.2019A-041)the Double-First Class Major Research Programs of Educational Department of Gansu Province(No.GSSYLXM-04)。
文摘Carpooling is a sustainable,economical,and environmentally friendly solution to reduce air pollution and ease traffic congestion in urban areas.However,existing regret theories lack consideration of the heterogeneity of attribute perception in different ways and the psychological factors that affect regret,so they cannot accurately portray urban residents’carpool travel decisions and cannot provide a correct explanation of the actual carpool choice behavior.In this paper,based on the analysis of classical random regret minimization models and random regret minimization models considering heterogeneity,the concept of psychological distance is introduced to address shortcomings of the existing models and construct an improved random regret minimization model considering heterogeneity and psychological distance.The results show that the fit and explanatory effect of the improved model proposed in this paper is better than that of the other two models.The psychological distance of travel residents during the Corona Virus Disease 2019(COVID-19)affects the anticipated regret value and the willingness to carpool.The model can better describe the carpool travel choice mechanism of travelers and effectively explain the carpool travel choice behavior of travelers.
基金Supported by the National Natural Science Foundations of China(Grant No.12061045,12031003)the Guangzhou Education Scientific Research Project 2024(Grant No.202315829)the Natural Science Foundation of Jiangxi Province(Grant No.20224ACB211004)。
文摘Impulse noise removal is an important task in image restoration.In this paper,we introduce a general nonsmooth nonconvex model for recovering images degraded by blur and impulsive noise,which can easily include some prior information,such as box constraint or low rank,etc.To deal with the nonconvex problem,we employ the proximal linearized minimization algorithm.For the subproblem,we use the alternating direction method of multipliers to solve it.Furthermore,based on the assumption that the objective function satisfies the KurdykaLojasiewicz property,we prove the global convergence of the proposed algorithm.Numerical experiments demonstrate that our method outperforms both the l1TV and Nonconvex TV models in terms of subjective and objective quality measurements.
文摘Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective management performance of municipal solid waste management underscores the interdisciplinarity strategies. Such knowledge and skills are paramount to uncover the sources of waste generation as well as means of waste storage, collection, recycling, transportation, handling/treatment, disposal, and monitoring. This study was conducted in Dar es Salaam city. Driven by the curiosity model of the solid waste minimization performance at source, study data was collected using focus group discussion techniques to ward-level local government officers, which was triangulated with literature and documentary review. The main themes of the FGD were situational factors (SFA) and local government by-laws (LGBY). In the FGD session, sub-themes of SFA tricked to understand how MSW minimization is related to the presence and effect of services such as land use planning, availability of landfills, solid waste transfer stations, material recovery facilities, incinerators, solid waste collection bins, solid waste trucks, solid waste management budget and solid waste collection agents. Similarly, FGD on LGBY was extended by sub-themes such as contents of the by-law, community awareness of the by-law, and by-law enforcement mechanisms. While data preparation applied an analytical hierarchy process, data analysis applied an ordinary least square (OLS) regression model for sub-criteria that explain SFA and LGBY;and OLS standard residues as variables into geographically weighted regression with a resolution of 241 × 241 meter in ArcMap v10.5. Results showed that situational factors and local government by-laws have a strong relationship with the rate of minimizing solid waste dumping in water bodies (local R square = 0.94).
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
文摘BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.
基金Supported by Joint Funds for the Innovation of Science and Technology,Fujian Province,No.2023Y9187 and No.2021Y9057.
文摘BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.
基金partially supported by the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,P.R.Chinathe Guiding Science and Technology Plan Project of Suqian City in 2023(No.Z2023130)partially supported by NSFC(No.12271234)。
文摘Given two ideals I and J of a commutative ring R,there are two extreme connections between I and J:I+J=R and I∩J={0}.For the former case,graphs whose vertices are defined as the proper ideals of R and that two vertices are adjacent if and only if their sum is the whole ring R are known as co-maximal ideal graphs.In this paper,we introduce a new kind of graph structure on R,called co-minimal ideal graph,according to the second case:Its vertices are the nonzero ideals of R and two vertices are adjacent if and only if their intersection is zero.Some important graph parameters(including girth,diameter,clique number and chromatic number)and graph structures(including tree and bipartite graph)of co-minimal ideal graphs over finite commutative rings are studied.In particular,we show that the co-maximal ideal graph and the co-minimal ideal graph over R are isomorphic if and only if the number of maximal ideals of R and the number of minimal ideals of R coincide.
基金Supported in part by NSFC(No.11971005)the Fundamental Research Funds for the Central Universities(Nos.GK202101008,GK202102012)。
文摘In this paper,we use the solution of the even functional Minkowski problem to show that there is a minimizing affine Minkowski total variation of the function of bounded variation.Moreover,for the Minkowski total variation,we use the method of convexation to establish the same conclusion as the convex body space.
文摘The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.
文摘The underlying molecular changes that result in minimal change disease(ne-phrotic syndrome)require an in-depth analysis.Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional factors in its pathogenesis.The application of therapeutic drugs relies on understanding the cascade of molecular events to determine their efficacy in managing the clinical condition.
基金supported by the National Natural Science Foundation of China(81925027,82002275,and 32271421)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades.The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration.Different from traditional bone-regeneration materials,injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach.In this review,we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis,with a focus on injectable biomaterials for various applications in the orthopedic field.More specifically,bioceramics and polymeric materials,together with their applications in bone fracture healing,vertebral body augmentation,bone implant fixation,bone tumor therapy,and bone-defect-related infection treatment are reviewed in detail.Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed.Finally,we summarize the challenges in this field and future directions for clinical treatment.
基金National Natural Science Foundation of China(12201171)。
文摘We construct an infinite family of minimal linear codes over the ring F_(2)+u F_(2).These codes are defined through trace functions and Boolean functions.Their Lee weight distribution is completely computed by Walsh transformation.By Gray mapping,we obtain a family of minimal binary linear codes from a generic construction,which have prominent applications in secret sharing and secure two-party computation.
文摘Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularly lumbosacral plexus.The introduction of minimally invasive surgical approaches,such as the lateral rectus approach,not only contributes to preserving lumbar plexus integrity in operated patients but also positively impacts their psychological well-being.Patients treated by surgical reduction of pelvic fractures with lumbosacral plexus injury often experience states of anxiety and depression.The lateral rectus approach is associated with lower levels of anxiety and depression compared to more invasive surgical techniques used for similar fractures.
基金supported bythe National Natural Science Foundation of China(Nos.U23A20523,82272504,and 82072456)the Department of Science and Technology of Jilin Province,China(Nos.20210101439JC,20210101321JC,20220204119YY,202201ZYTS131,202201ZYTS129,20230204114YY,YDZJ202201ZYTS505,and YDZJ202301ZYTS076)+4 种基金the Special Program for Science and Technology Personnel of Changchun(No.ZKICKJJ2023015)the Key Training Plan for Outstanding Youth of Jilin University(No.419070623036)the Research Fund of the First Hospital of Jilin University(No.2021-zl-01)the Graduate Innovation Fund of Jilin University(No.2024CX125)the Foun-dation of National Center for Translational Medicine(Shanghai)SHU Branch,China(No.SUITM-202405).
文摘The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects.