A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state ...A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state of the medium and low speed maglev coupled system by the additional deformation of the maglev track.This study investigated the dynamic properties of the coupled vibration system affected by the subgrade settlement.First,a theoretical coupled vibration model of a maglev train-track-ground girder system with uneven subgrade settlement was proposed and verified.Then,the effect mechanism of the coupled system caused by the uneven subgrade settlement was explored.Finally,settlement types and subgrade support voiding were examined.The analysis showed that the uneven subgrade settlement considerably increased the dynamic responses of the levitation control system and maglev vehicle while having a minor influence on those of the track-ground girder.The influence of a single ground girder settling was the strongest,and adjacent sides’settling of two ground girders was the weakest for the vibration of a maglev train.An extremely large uneven settlement exceeding 6 mm led to active levitation control system instability.The subgrade support voiding enlarged the vehicle-induced vibration of the track ground girder.展开更多
To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specif...To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.展开更多
This study examines the temperature field distribution characteristics and temperature effects during the prefabrication of composite box girders with corrugated steel webs(CBGCSWs),aiming to provide practical recomme...This study examines the temperature field distribution characteristics and temperature effects during the prefabrication of composite box girders with corrugated steel webs(CBGCSWs),aiming to provide practical recommendations for controlling temperature-induced cracking and technical guidance for concrete mix proportions and placement processes.Based on field measurement data,a three-dimensional finite element model was developed to simulate the temperature effects at critical locations during the prefabrication phase.By varying the concrete mix proportions,initial casting temperature,and ambient temperature,the study elucidates the variation patterns of the temperature field during precast placement.The results show that the temperature rise caused by hydration heat increases with higher cement and fly ash content,whereas reducing cement and using minimal fly ash effectively lower the hydration temperature.However,the influence of fly ash on prestress losses should be carefully evaluated during the design phase.Higher initial casting temperatures accelerate hydration rates,leading to a rapid temperature rise.Significant differences between the initial casting and ambient temperatures result in larger residual temperature stresses.Based on concrete mix proportions,curing conditions,and ambient temperatures,three recommended casting temperature ranges were identified:5℃–10℃,10℃–25℃,and 25℃–30℃.Variations in the average ambient temperature affect the peak temperature of the hydration reaction and indirectly influence the final temperature distribution of the concrete structure.Optimizing the demolding time and applying geotextiles and water curing effectively reduces the peak temperature,maximum internal-to-surface temperature gradients,and surface tensile stresses,thereby mitigating the risk of temperature-induced cracking.展开更多
Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider...Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider bridge decks and larger aspect ratios(B/D).To obtain more effective and aerodynamic design shapes for streamlined box girders,it is essential to investigate the impact of B/D on their aerodynamic performance.Accordingly,in this study we investigate the buffeting responses of large-span suspension bridges using girders of varying aspect ratios(B/D of 7.5,9.3,and 12.7).First,the aerodynamic coefficients of these girders are estimated using computational fluid dynamics(CFD)simulations.Subsequently,spatial finite element(FE)models of three long-span suspension bridges with different girders(B/D of 7.5,9.3,and 12.7)are established in Ansys software,and the dynamic characteristics of these bridges are obtained.Then,the time-domain buffeting analysis is performed by simulating the fluctuating wind fields acting on the bridge through the spectral representation method.Ultimately,the buffeting responses are computed using Ansys software,and the impact of B/D on these responses is assessed.The results reveal that the root mean square(RMS)values of the main girder’s buffeting displacement are highest at the midspan position and are lowest at the ends of the bridge.A decrease in B/D of the main girder leads to a more severe buffeting response because both the range and the effective value of the displacement increase with the decreasing B/D.Comparing the buffeting displacements in three directions,B/D plays a significant role in the vertical buffeting displacement,moderately impacts the torsional displacement,and has the least effect on the lateral displacement.The findings of this study may help wind resistance analysis and design optimization for bridges.展开更多
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural ...In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural sequential coupling,and the birth-death element method.The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress.Furthermore,the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder.The results indicate that fatigue cracks at the weld toe of the top deck,the weld root of the top deck,and the opening of the transverse diaphragm will not propagate under the action of a standard vehicle load.However,the inclusion of residual stress leads to the propagation of these cracks.When considering residual stress,the fatigue crack propagation paths at the weld toe of the transverse diaphragm and the U-rib weld toe align with those observed in actual bridges.In the absence of residual stress,the cracks at the toe of the transverse diaphragm with a 15%mass loss rate are categorized as type I cracks.Conversely,when residual stress is considered,these cracks become I-II composite cracks.Residual stress significantly alters the cumulative energy release rate of the three fracturemodes.Therefore,incorporating the influence of residual stress is essential when assessing the fatigue performance of corroded steel box girders in long-span bridges.展开更多
This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were insp...This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.展开更多
The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness de...The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.展开更多
基金National Natural Science Foundation of China under Grant Nos.52478467and 52108417Guangdong Basic and Applied Basic Research Foundation under Grant No.2024A1515012569the Natural Science Basic Research Program of Shaanxi under Grant No.2021JQ-101。
文摘A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state of the medium and low speed maglev coupled system by the additional deformation of the maglev track.This study investigated the dynamic properties of the coupled vibration system affected by the subgrade settlement.First,a theoretical coupled vibration model of a maglev train-track-ground girder system with uneven subgrade settlement was proposed and verified.Then,the effect mechanism of the coupled system caused by the uneven subgrade settlement was explored.Finally,settlement types and subgrade support voiding were examined.The analysis showed that the uneven subgrade settlement considerably increased the dynamic responses of the levitation control system and maglev vehicle while having a minor influence on those of the track-ground girder.The influence of a single ground girder settling was the strongest,and adjacent sides’settling of two ground girders was the weakest for the vibration of a maglev train.An extremely large uneven settlement exceeding 6 mm led to active levitation control system instability.The subgrade support voiding enlarged the vehicle-induced vibration of the track ground girder.
基金The National Key Research and Development Program of China grant No.2022YFB3706704 received by Yuan Renthe National Natural and Science Foundation of China grant No.52308150 received by Xiang Xu.
文摘To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.
基金supported by the National Natural Science Foundation of China(U22A20598,52279113)Key Research and Development Special Program of Henan Province(241111322500)Support Plan for University Science and Technology Innovation Team of Henan Province(24IRTSTHN009).
文摘This study examines the temperature field distribution characteristics and temperature effects during the prefabrication of composite box girders with corrugated steel webs(CBGCSWs),aiming to provide practical recommendations for controlling temperature-induced cracking and technical guidance for concrete mix proportions and placement processes.Based on field measurement data,a three-dimensional finite element model was developed to simulate the temperature effects at critical locations during the prefabrication phase.By varying the concrete mix proportions,initial casting temperature,and ambient temperature,the study elucidates the variation patterns of the temperature field during precast placement.The results show that the temperature rise caused by hydration heat increases with higher cement and fly ash content,whereas reducing cement and using minimal fly ash effectively lower the hydration temperature.However,the influence of fly ash on prestress losses should be carefully evaluated during the design phase.Higher initial casting temperatures accelerate hydration rates,leading to a rapid temperature rise.Significant differences between the initial casting and ambient temperatures result in larger residual temperature stresses.Based on concrete mix proportions,curing conditions,and ambient temperatures,three recommended casting temperature ranges were identified:5℃–10℃,10℃–25℃,and 25℃–30℃.Variations in the average ambient temperature affect the peak temperature of the hydration reaction and indirectly influence the final temperature distribution of the concrete structure.Optimizing the demolding time and applying geotextiles and water curing effectively reduces the peak temperature,maximum internal-to-surface temperature gradients,and surface tensile stresses,thereby mitigating the risk of temperature-induced cracking.
基金funded by the National Natural Science Foundation of China(Grant No.52108435)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202404320)+1 种基金Chongqing Jiaotong University Postgraduate Research and Innovation Project(2024S0013)Chongqing Jiaotong University Undergraduate Innovation and Entrepreneurship Project(S202410618019).
文摘Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider bridge decks and larger aspect ratios(B/D).To obtain more effective and aerodynamic design shapes for streamlined box girders,it is essential to investigate the impact of B/D on their aerodynamic performance.Accordingly,in this study we investigate the buffeting responses of large-span suspension bridges using girders of varying aspect ratios(B/D of 7.5,9.3,and 12.7).First,the aerodynamic coefficients of these girders are estimated using computational fluid dynamics(CFD)simulations.Subsequently,spatial finite element(FE)models of three long-span suspension bridges with different girders(B/D of 7.5,9.3,and 12.7)are established in Ansys software,and the dynamic characteristics of these bridges are obtained.Then,the time-domain buffeting analysis is performed by simulating the fluctuating wind fields acting on the bridge through the spectral representation method.Ultimately,the buffeting responses are computed using Ansys software,and the impact of B/D on these responses is assessed.The results reveal that the root mean square(RMS)values of the main girder’s buffeting displacement are highest at the midspan position and are lowest at the ends of the bridge.A decrease in B/D of the main girder leads to a more severe buffeting response because both the range and the effective value of the displacement increase with the decreasing B/D.Comparing the buffeting displacements in three directions,B/D plays a significant role in the vertical buffeting displacement,moderately impacts the torsional displacement,and has the least effect on the lateral displacement.The findings of this study may help wind resistance analysis and design optimization for bridges.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
基金supported by a grant from the Key Technologies Research and Development Program(No.2021YFF0602005)Jiangsu Key Research and Development Plan(Nos.BE2022129,BE2022134)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033),which are gratefully acknowledged.
文摘In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural sequential coupling,and the birth-death element method.The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress.Furthermore,the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder.The results indicate that fatigue cracks at the weld toe of the top deck,the weld root of the top deck,and the opening of the transverse diaphragm will not propagate under the action of a standard vehicle load.However,the inclusion of residual stress leads to the propagation of these cracks.When considering residual stress,the fatigue crack propagation paths at the weld toe of the transverse diaphragm and the U-rib weld toe align with those observed in actual bridges.In the absence of residual stress,the cracks at the toe of the transverse diaphragm with a 15%mass loss rate are categorized as type I cracks.Conversely,when residual stress is considered,these cracks become I-II composite cracks.Residual stress significantly alters the cumulative energy release rate of the three fracturemodes.Therefore,incorporating the influence of residual stress is essential when assessing the fatigue performance of corroded steel box girders in long-span bridges.
文摘This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.
文摘The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.