Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints...Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints were investigated.Besides,the joint's interface microstructure,composition,and phases were analyzed.Results show that the AgCuInTi filler metal exerts a good wetting effect to the surface of cemented carbide and steel.With the increase in brazing temperature,the wetting angle decreases and the spreading area increases.The suitable temperature for vacuum brazing of PDC cutters is 770℃,and the maximum shear strength is 228 MPa at this temperature.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ...The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.展开更多
The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significan...The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significantly improve the rate of penetration(ROP)and extend PDC bit life in hard and abrasive formations.However,the breakage characteristics and failure mode of the conical PDC cutter cutting carbonate rock is still masked.In this paper,a series of single-cutter cutting tests were carried out with the conical and conventional PDC cutters.The cutting force,rock-breaking process,surface morphology of cutting grooves and cuttings characteristic were analyzed.Based on the derived formula of the brittle fracture index,the failure model of carbonate rock was quantitatively analyzed under the action of conical and conventional cutter.The results show that the average cutting force of the conical cutter is less than that of the conventional cutter,which means greater stability of the cutting process using the conical cutter.Carbonate rock with calcite as the main component tends to generate blocky rock debris by conical cutter.The height of the cuttings generated by the conical cutter is 0.5 mm higher than that generated by the conventional cutter.The conical cutter exhibits enhanced penetration capabilities within carbonate rock.The accumulation of rock debris in front of the conventional cutter is obvious.Whereas,the conical cutter facilitates the cuttings transport,thereby alleviating drilling stickiness slip.At different cutting depths,the conical cutter consistently causes asymmetric jagged brittle tensile fracture zones on both sides of the cutting groove.Calculations based on the brittle fracture index demonstrate that the brittle fracture index of the conical cutter generally doubles that of the conventional cutter.For carbonate rock,the conical cutter displays superior utilization of brittle fracture abilities.The research findings of this work offer insights into the breakage process and failure mode of carbonate rock by the conical cutter.展开更多
In tunnel construction with tunnel boring machines(TBMs),accurate knowledge of disc-cutter failure states is crucial to ensure efficient operation and prevent delays and cost overruns.This study investigates the influ...In tunnel construction with tunnel boring machines(TBMs),accurate knowledge of disc-cutter failure states is crucial to ensure efficient operation and prevent delays and cost overruns.This study investigates the influence of disc-cutter partial wear on tunneling parameters and proposes a novel method for discriminating partial-wear ratio based on a stacking ensemble model.The time-domain features of torque and thrust,including the average value and standard deviation,are analyzed through a series of scaled-down experimental tests on partial wear.Torque and thrust values will increase when a disc cutter is trapped and partially worn.The impact of partial-wear ratio on tunneling parameters appears to be more significant than partial-wear depth.A total of 40 features are selected from the time domain,frequency domain,and time-frequency domain to describe the torque and thrust.The relationships between these features and the partial-wear ratio are analyzed using the Pearson coefficient and Copula entropy.The results reveal that,except for the form factor in the time-domain features,the remaining features exhibit certain linear or non-linear correlations with the partial-wear ratio.Lastly,the proposed model successfully achieves the discrimination of the partial-wear ratio and outperforms other commonly used models in terms of overall classification accuracy and differentiation capability in different categories.This research provides effective support for monitoring and health management of disc-cutter failure states.展开更多
The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechan...The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.展开更多
When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc...When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling.展开更多
For rough machining of a complex narrow cavity,e.g.,a complex blisk channel on an aero-engine,the typically used cutting tools are the slender cylindrical cutter and conical cutter.Nevertheless,as neither of the two i...For rough machining of a complex narrow cavity,e.g.,a complex blisk channel on an aero-engine,the typically used cutting tools are the slender cylindrical cutter and conical cutter.Nevertheless,as neither of the two is particularly suited for rough machining,wherein the main purpose is to remove a large volume as quickly as possible,the machining efficiency is low,especially when the part materials are of hard-to-cut types(e.g.,Titanium-alloy)for which it often takes days to rough machine a blisk.Fortunately,disc machining provides a new and efficient roughing solution,since a disc cutter with a large radius enables a much larger cutting speed and thus a larger material removal rate.However,due to the large radius of the disc cutter,its potential collision with narrow and twisted channels becomes a serious concern.In this paper,we propose a novel twophase approach for efficiently machining a complex narrow cavity workpiece using a disc-shaped cutter,i.e.,3+2-axis disc-slotting of the channel by multiple layers(rough machining)+five-axis disc-milling of the freeform channel side surfaces(semi-finish machining).Both simulation and physical cutting experiments are conducted to assess the effectiveness and advantages of the proposed method.The experimental results show that,with respect to a same cusp-height threshold on the channel side surfaces,the total machining time of the tested part by the proposed method is about only 36%of that by the conventional approach of plunging-milling(for roughing)plus milling by a slender cylindrical cutter(for semi-finishing).展开更多
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
In the actual service process of the tunnel boring machine(TBM)cutter head,the fatigue failure of the disc body is serious.Aimed at the problem of premature failure of cutter head due to the extreme service environmen...In the actual service process of the tunnel boring machine(TBM)cutter head,the fatigue failure of the disc body is serious.Aimed at the problem of premature failure of cutter head due to the extreme service environment and complicated structure of the TBM cutter head,the previous TBM cutter head failure data are combined to establish a method for calculating the space crack growth in this paper.Based on the structure of the TBM cutter head itself,the law of the shape and parameters of the stiffened panels on the crack propagation resistance is studied to further present the method of anti-damage and anti-crack for the TBM cutter head.The results illustrate that the basis and methods for the structural design of the TBM cutter head are put forward.展开更多
基金National Natural Science Foundation of China(52075551,52271045,51975469)Supported by State Key Laboratory of Advanced Welding and Joining(AWJ-22M09)+2 种基金Supported by State Key Laboratory of Advanced Brazing Filler Metals and Technology(SKLABFMT201904)Key Research and Development Program of Shaanxi Province(2022GY-224)Innovative Talent Recommendation Program(Youth Science and Technology New Star Project)of Shaanxi Province(2020 KJX X-045)。
文摘Polycrystalline diamond compact(PDC)cutters and carbon steel were brazed by AgCuInTi filler metal under vacuum condition.The effects of brazing temperature on the wettability of base metal and shear strength of joints were investigated.Besides,the joint's interface microstructure,composition,and phases were analyzed.Results show that the AgCuInTi filler metal exerts a good wetting effect to the surface of cemented carbide and steel.With the increase in brazing temperature,the wetting angle decreases and the spreading area increases.The suitable temperature for vacuum brazing of PDC cutters is 770℃,and the maximum shear strength is 228 MPa at this temperature.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
基金support of the“National R&D Project for Smart Construction Technology (Grant No.RS-2020-KA157074)”funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land,Infrastructure and Transport,and managed by the Korea Expressway Corporation.
文摘The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.
基金supported by the NSFC Key International(Regional)Cooperative Research Projects(No.52020105001)National Natural Science Foundation of China(52304014)+2 种基金China Postdoctoral Science Foundation funded project(2023M733873)the Science Foundation of China University of Petroleum,Beijing(No.2462023SZBH003)General Program of National Natural Science Foundation of China(52374016,52274016)。
文摘The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significantly improve the rate of penetration(ROP)and extend PDC bit life in hard and abrasive formations.However,the breakage characteristics and failure mode of the conical PDC cutter cutting carbonate rock is still masked.In this paper,a series of single-cutter cutting tests were carried out with the conical and conventional PDC cutters.The cutting force,rock-breaking process,surface morphology of cutting grooves and cuttings characteristic were analyzed.Based on the derived formula of the brittle fracture index,the failure model of carbonate rock was quantitatively analyzed under the action of conical and conventional cutter.The results show that the average cutting force of the conical cutter is less than that of the conventional cutter,which means greater stability of the cutting process using the conical cutter.Carbonate rock with calcite as the main component tends to generate blocky rock debris by conical cutter.The height of the cuttings generated by the conical cutter is 0.5 mm higher than that generated by the conventional cutter.The conical cutter exhibits enhanced penetration capabilities within carbonate rock.The accumulation of rock debris in front of the conventional cutter is obvious.Whereas,the conical cutter facilitates the cuttings transport,thereby alleviating drilling stickiness slip.At different cutting depths,the conical cutter consistently causes asymmetric jagged brittle tensile fracture zones on both sides of the cutting groove.Calculations based on the brittle fracture index demonstrate that the brittle fracture index of the conical cutter generally doubles that of the conventional cutter.For carbonate rock,the conical cutter displays superior utilization of brittle fracture abilities.The research findings of this work offer insights into the breakage process and failure mode of carbonate rock by the conical cutter.
基金supported by the Natural Science Basic Research Program of Shaanxi Province(No.2019JLZ-13)the National Key R&D Program of China(No.2022YFC3802305)+1 种基金the National Natural Science Foundation of China(No.52105074)the Open Project of State Key Laboratory of Shield Machine and Boring Technology(No.SKLST-2021-K02),China.
文摘In tunnel construction with tunnel boring machines(TBMs),accurate knowledge of disc-cutter failure states is crucial to ensure efficient operation and prevent delays and cost overruns.This study investigates the influence of disc-cutter partial wear on tunneling parameters and proposes a novel method for discriminating partial-wear ratio based on a stacking ensemble model.The time-domain features of torque and thrust,including the average value and standard deviation,are analyzed through a series of scaled-down experimental tests on partial wear.Torque and thrust values will increase when a disc cutter is trapped and partially worn.The impact of partial-wear ratio on tunneling parameters appears to be more significant than partial-wear depth.A total of 40 features are selected from the time domain,frequency domain,and time-frequency domain to describe the torque and thrust.The relationships between these features and the partial-wear ratio are analyzed using the Pearson coefficient and Copula entropy.The results reveal that,except for the form factor in the time-domain features,the remaining features exhibit certain linear or non-linear correlations with the partial-wear ratio.Lastly,the proposed model successfully achieves the discrimination of the partial-wear ratio and outperforms other commonly used models in terms of overall classification accuracy and differentiation capability in different categories.This research provides effective support for monitoring and health management of disc-cutter failure states.
基金the National Natural Science Foundation of China(No.U1934213)the Sichuan Science and Technology Program(No.2019YFG0460)。
文摘The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.
基金The support provided by the National Natural Science Foundation of Youth Fund Project of China(Grant No.52308415)Key Research and Development Program of Hubei Province,China(Grant No.2021BCA154)Natural Science Foundation of Hubei Province,China(Grant No.2021CFA081)is gratefully acknowledged.
文摘When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling.
基金supported in part by Foshan HKUST Projects(Project ID:FSUST20-SRI09E–FSPM02202007-1)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(Project ID:HZQB-KCZYB-2020083)the National Science and Technology Major Project(Grant No.J2019-VII-0001-0141)。
文摘For rough machining of a complex narrow cavity,e.g.,a complex blisk channel on an aero-engine,the typically used cutting tools are the slender cylindrical cutter and conical cutter.Nevertheless,as neither of the two is particularly suited for rough machining,wherein the main purpose is to remove a large volume as quickly as possible,the machining efficiency is low,especially when the part materials are of hard-to-cut types(e.g.,Titanium-alloy)for which it often takes days to rough machine a blisk.Fortunately,disc machining provides a new and efficient roughing solution,since a disc cutter with a large radius enables a much larger cutting speed and thus a larger material removal rate.However,due to the large radius of the disc cutter,its potential collision with narrow and twisted channels becomes a serious concern.In this paper,we propose a novel twophase approach for efficiently machining a complex narrow cavity workpiece using a disc-shaped cutter,i.e.,3+2-axis disc-slotting of the channel by multiple layers(rough machining)+five-axis disc-milling of the freeform channel side surfaces(semi-finish machining).Both simulation and physical cutting experiments are conducted to assess the effectiveness and advantages of the proposed method.The experimental results show that,with respect to a same cusp-height threshold on the channel side surfaces,the total machining time of the tested part by the proposed method is about only 36%of that by the conventional approach of plunging-milling(for roughing)plus milling by a slender cylindrical cutter(for semi-finishing).
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
基金Scientific Research Project of Education Department of Liaoning Province(No.JDL2020028)。
文摘In the actual service process of the tunnel boring machine(TBM)cutter head,the fatigue failure of the disc body is serious.Aimed at the problem of premature failure of cutter head due to the extreme service environment and complicated structure of the TBM cutter head,the previous TBM cutter head failure data are combined to establish a method for calculating the space crack growth in this paper.Based on the structure of the TBM cutter head itself,the law of the shape and parameters of the stiffened panels on the crack propagation resistance is studied to further present the method of anti-damage and anti-crack for the TBM cutter head.The results illustrate that the basis and methods for the structural design of the TBM cutter head are put forward.