Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for ...Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors.展开更多
With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays...With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.展开更多
基金suported by the Fundamental Research Grant Scheme(FRGS)of Universiti Sains Malaysia,Research Number:FRGS/1/2024/ICT02/USM/02/1.
文摘Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors.
基金This work was supported by National Key R&D Program of China under Grant(Nos.2018AAA0100800,2018YFE0106800)National Natural Science Foundation of China(Nos.61725304,61673361 and 62033012)Major Special Science and Technology Project of Anhui,China(No.912198698036).
文摘With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.