期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Shapelet剪枝和覆盖的时间序列分类算法 被引量:17
1
作者 原继东 王志海 韩萌 《软件学报》 EI CSCD 北大核心 2015年第9期2311-2325,共15页
时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同... 时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同的分类策略.但该方法也存在不足:一是在shapelets转换时,用于产生最好分类结果的shapelets数量是很难确定的;二是被选择的shapelets之间往往存在着较大的相似性.针对这两个问题,首先提出了一种简单有效的shapelet剪枝技术,用于过滤掉相似的shapelets;其次,提出了一种基于shapelets覆盖的方法来确定用于数据转换的shapelets的数量.通过在多个数据集上的测试实验,表明了所提出的算法具有更高的分类准确率. 展开更多
关键词 时间序列分类 shapelet剪枝 shapelet覆盖
在线阅读 下载PDF
Multi‑shapelet:一种基于shapelet的多变量时间序列分类方法 被引量:4
2
作者 詹熙 黎维 潘志松 《数据采集与处理》 CSCD 北大核心 2023年第2期386-400,共15页
shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很... shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很难直接对其进行比较,这对基于shapelet多变量时间序列分类方法提出了独特的挑战。为了应对这一挑战,提出了一种基于无监督表示学习和shapelet的多变量时间序列分类方法Multi‑shapelet。Multi‑shapelet首先使用混合模型DC‑GNN(Dilated convolution neural network and graph neural network,DC‑GNN)作为编码器,将不同长度的候选shapelet嵌入统一的shapelet选择空间,以进行shapelet之间的比较;其次,提出了一种新的损失函数以无监督学习方式训练该编码器,使得DC‑GNN对shapelet编码得到相应的嵌入(Embedding)后,属于同类shapelet对应的嵌入之间的相对位置形成的拓扑与原空间中shapelet之间相对位置形成的拓扑之间的关系更接近于一种等比例的缩小,这对后续基于相似性的剪枝过程十分重要;最后,使用K‑means聚类和模拟退火算法进行shapelet剪枝和选择操作。在UEA的18个多变量时间序列数据集上的实验结果表明,Multi‑shapelet的整体精度相比于其他方法得到了显著提升。 展开更多
关键词 shapelet 无监督表示学习 K‑means聚类 模拟退火算法 shapelet剪枝
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部