期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Shapelet剪枝和覆盖的时间序列分类算法
被引量:
17
1
作者
原继东
王志海
韩萌
《软件学报》
EI
CSCD
北大核心
2015年第9期2311-2325,共15页
时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同...
时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同的分类策略.但该方法也存在不足:一是在shapelets转换时,用于产生最好分类结果的shapelets数量是很难确定的;二是被选择的shapelets之间往往存在着较大的相似性.针对这两个问题,首先提出了一种简单有效的shapelet剪枝技术,用于过滤掉相似的shapelets;其次,提出了一种基于shapelets覆盖的方法来确定用于数据转换的shapelets的数量.通过在多个数据集上的测试实验,表明了所提出的算法具有更高的分类准确率.
展开更多
关键词
时间序列分类
shapelet
剪枝
shapelet
覆盖
在线阅读
下载PDF
职称材料
Multi‑shapelet:一种基于shapelet的多变量时间序列分类方法
被引量:
4
2
作者
詹熙
黎维
潘志松
《数据采集与处理》
CSCD
北大核心
2023年第2期386-400,共15页
shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很...
shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很难直接对其进行比较,这对基于shapelet多变量时间序列分类方法提出了独特的挑战。为了应对这一挑战,提出了一种基于无监督表示学习和shapelet的多变量时间序列分类方法Multi‑shapelet。Multi‑shapelet首先使用混合模型DC‑GNN(Dilated convolution neural network and graph neural network,DC‑GNN)作为编码器,将不同长度的候选shapelet嵌入统一的shapelet选择空间,以进行shapelet之间的比较;其次,提出了一种新的损失函数以无监督学习方式训练该编码器,使得DC‑GNN对shapelet编码得到相应的嵌入(Embedding)后,属于同类shapelet对应的嵌入之间的相对位置形成的拓扑与原空间中shapelet之间相对位置形成的拓扑之间的关系更接近于一种等比例的缩小,这对后续基于相似性的剪枝过程十分重要;最后,使用K‑means聚类和模拟退火算法进行shapelet剪枝和选择操作。在UEA的18个多变量时间序列数据集上的实验结果表明,Multi‑shapelet的整体精度相比于其他方法得到了显著提升。
展开更多
关键词
shapelet
无监督表示学习
K‑means聚类
模拟退火算法
shapelet
剪枝
在线阅读
下载PDF
职称材料
题名
基于Shapelet剪枝和覆盖的时间序列分类算法
被引量:
17
1
作者
原继东
王志海
韩萌
机构
北京交通大学计算机与信息技术学院
交通数据分析与挖掘北京市重点实验室(北京交通大学)
出处
《软件学报》
EI
CSCD
北大核心
2015年第9期2311-2325,共15页
基金
北京市自然科学基金(4142042)
中央高校基本科研基金(2015YJS049)
文摘
时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同的分类策略.但该方法也存在不足:一是在shapelets转换时,用于产生最好分类结果的shapelets数量是很难确定的;二是被选择的shapelets之间往往存在着较大的相似性.针对这两个问题,首先提出了一种简单有效的shapelet剪枝技术,用于过滤掉相似的shapelets;其次,提出了一种基于shapelets覆盖的方法来确定用于数据转换的shapelets的数量.通过在多个数据集上的测试实验,表明了所提出的算法具有更高的分类准确率.
关键词
时间序列分类
shapelet
剪枝
shapelet
覆盖
Keywords
time series classification
shapelet
pruning
shapelet
coverage
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
Multi‑shapelet:一种基于shapelet的多变量时间序列分类方法
被引量:
4
2
作者
詹熙
黎维
潘志松
机构
中国人民解放军陆军工程大学指挥控制工程学院
出处
《数据采集与处理》
CSCD
北大核心
2023年第2期386-400,共15页
基金
国家自然科学基金(62076251)。
文摘
shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很难直接对其进行比较,这对基于shapelet多变量时间序列分类方法提出了独特的挑战。为了应对这一挑战,提出了一种基于无监督表示学习和shapelet的多变量时间序列分类方法Multi‑shapelet。Multi‑shapelet首先使用混合模型DC‑GNN(Dilated convolution neural network and graph neural network,DC‑GNN)作为编码器,将不同长度的候选shapelet嵌入统一的shapelet选择空间,以进行shapelet之间的比较;其次,提出了一种新的损失函数以无监督学习方式训练该编码器,使得DC‑GNN对shapelet编码得到相应的嵌入(Embedding)后,属于同类shapelet对应的嵌入之间的相对位置形成的拓扑与原空间中shapelet之间相对位置形成的拓扑之间的关系更接近于一种等比例的缩小,这对后续基于相似性的剪枝过程十分重要;最后,使用K‑means聚类和模拟退火算法进行shapelet剪枝和选择操作。在UEA的18个多变量时间序列数据集上的实验结果表明,Multi‑shapelet的整体精度相比于其他方法得到了显著提升。
关键词
shapelet
无监督表示学习
K‑means聚类
模拟退火算法
shapelet
剪枝
Keywords
shapelet
unsupervised representation learning
K‑means clustering
simulated annealing algorithm
shapelet prune
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
O211.61 [理学—概率论与数理统计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Shapelet剪枝和覆盖的时间序列分类算法
原继东
王志海
韩萌
《软件学报》
EI
CSCD
北大核心
2015
17
在线阅读
下载PDF
职称材料
2
Multi‑shapelet:一种基于shapelet的多变量时间序列分类方法
詹熙
黎维
潘志松
《数据采集与处理》
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部