The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ...The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.展开更多
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ...Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.展开更多
In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a tran...In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.展开更多
An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is p...An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.展开更多
A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameter...A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.展开更多
The Explosive Reactive Armors(ERA)are really efficient at reducing Shaped Charge Jet(SCJ)performance.The main destabilizing mechanism is the transverse movement of the front and rear moving plates(MP)on the SCJ.Theref...The Explosive Reactive Armors(ERA)are really efficient at reducing Shaped Charge Jet(SCJ)performance.The main destabilizing mechanism is the transverse movement of the front and rear moving plates(MP)on the SCJ.Therefore,a good understanding of the interaction SCJ/MP is essential for improving both weapon and armor systems.In a previous article,we have shown that interaction regimes are mainly influenced by the local collision geometry.Thus,in the collision point frame,the angle of collision be-tween the continuous SCJ and the MP is a key parameter.This flow angle is acute for the Backward Moving plate(BMP)moving against the SCJ and obtuse for the Forward Moving Plate(FMP)moving alongside it.In the former,the jet is simply deflected,which is the regime 1 of deflection.In the latter,the interaction turns on an alternative creation of fragment and ligament,which is the regime 2.Fragments are parts of the jet that are only slightly deflected while ligaments are the curved material bridges that connect two consecutive fragments.When stretching,the jet is systematically subject to instabilities that disturb its surface,creating necks along it.Their growth finally leads to the jet fragmentation.In this article,we focus on this jet distur-bance and its consequences on the SCJ/MP interaction.An experimental set-up was built to implement the interaction between a SCJ and a moving plate for different collision points,at different stand-off distances.The plate can interact with a smooth SCJ or a disturbed SCJ at a close and a far stand-off distance,respectively.One of the main results is the visualization of a regime change in SCJ/BMP interaction.A regime 1(deflection)interaction changes into a ligament regime interaction(similar to a FMP regime 2)when the collision point stand-off is increased.It is proposed that this change can be attributed as the increase of the amplitude of the jet surface disturbances.This phenomenon is well captured by the gSPH simula-tions.Finally,using both experimental and numerical approaches,we propose a new detailed analysis of the different phenomena occurring during the interaction between a disturbed-surface jet and a moving plate.Interaction regime changes are linked to jet local geometry changes.The interactions of a BMP with a smooth SCJ or with a disturbed surface SCJ are geometrically not the same and,thus,generate different local flows and interaction mechanisms.However,some other simulations have been carried out with constant velocity jet whose surface has been previously disturbed.These simulations underline the influence of both disturbance wavelength l and amplitude A on the interaction regimes.Surface disturbances of the SCJ,linked to its stretching,have a major influence on its interaction with a moving plate.展开更多
The attosecond extreme ultraviolet(XUV) pulse pump and femtosecond infrared(IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption(ATA) spectra of microscopic systems. In a r...The attosecond extreme ultraviolet(XUV) pulse pump and femtosecond infrared(IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption(ATA) spectra of microscopic systems. In a recent report [Proc. Natl. Acad. Sci. USA 121 e2307836121(2024)], we showed that shaped XUV pulses with spectral minima can significantly alter the absorption line shape of helium's 2s2p doubly excited state within a few tens of attoseconds.However, it remains unclear if similar effects could be observed in a singly excited state. In this study, we use shaped XUV pulses to excite helium's 2p singly excited state and couple the 2p and 3d states with a delayed IR pulse. Comparing these results with those from Gaussian XUV pulses, we find that the ATA spectra for the shaped XUV pulses exhibit more pronounced changes with delay, while the changes for the Gaussian pulses are gradual. We also explain these differences through population changes and analytical models. Our findings show that shaped XUV pulses can regulate the dynamics and absorption spectra of a singly excited state.展开更多
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of...Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet.展开更多
Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material...Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material hot forging die with high precision,superior per-formance,and conformal cooling channels is developed.This improves the toughness of the die cavity and reduces the working temperature,thereby forming an isothermal field,which is an effective method to enhance the lifespan of the hot forging die.Three kinds of gradient flux-cored wires are designed for the surface of 5CrNiMo steel,and the microstructure and mechanical properties between gradient interfaces were studied.Based on the spatial curved structure of shaped waterways in the hot forging die cavity,a study was conducted on the strategy of partitioned forming for the manufacturing of the die with shaped waterways.In order to avoid interference with the arc gun,the hot for-ging die is divided into four regions,namely the transition region,upper,middle,and lower region,based on a combination of cavity depth and internal U-shaped and quadrilateral structures.The results show that the developed flux-cored wires have good moldability with straight sides of deposited metal under different process parameters and flat surface without cracks,pores and other defects.Under the same working conditions,the life of hot forging die formed by the gradient materials is more than multiple times that of the single material hot forging die,and the temperature gradient field of the shaped waterway die is 7℃/cm smaller than that of traditional straight waterway.展开更多
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate...Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.展开更多
Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters ...Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.展开更多
The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge...The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge.The high machining requirements of future aeroengine turbine disc slots will be difficult to satisfy using the broaching method.In addition,existing methods of slot machin-ing face difficulties in ensuring surface integrity.This study explored a cup shaped electroplated Cubic Boron Nitride(CBN)abrasive wheel for profile grinding the turbine disc slots of FGH96 powder metallurgy superalloy.The matrix structure of the cup shaped abrasive wheel was designed and verified.A profile grinding experiment was conducted for fir-tree slots on a five-axis machining center.The accuracy and the surface integrity were analyzed.Results show that the key dimension detection results of the slots were within the allowable tolerance range.Meanwhile,an average sur-face roughness Ra of 0.55μm was achieved,the residual stress was compressive,the plastic defor-mation layer thickness was less than 5μm,and the hardening layer thickness was less than 20μm.The research findings provide a new approach to machining the slots of aviation engine turbine discs and guidance for the high-quality processing of complex components.展开更多
Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake...Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.展开更多
The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is ...The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is influenced by the design of the perforation charge and the strength characteristics of the rock material.However,as a crucial objective function for optimizing perforating charge structures,jet velocity lacks a rapid and accurate calculating method.This article addresses this issue by proposing an improved collapse velocity model using the DP46RDX42-Y perforating charge as a case study.It presents a novel approach for calculating jet velocity based on the unsteady Pugh-Eichelberger-Rostoker(PER)theory.To validate the effectiveness of the proposed method and analyze the impact of different characteristic parameters on jet tip velocity,a series of numerical simulations were conducted using LS-DYNA software combined with Arbitrary Lagrange-Euler(ALE)techniques.Results indicate excellent agreement between the proposed method and the numerical results,demonstrating its superiority over the traditional Gurney formula with an impressive 34.15%increase in accuracy.Notably,this method is particularly suitable for perforating charges with low detonation velocity.Increasing the liner density and decreasing the liner thickness and cone angle is recommended to achieve higher jet tip velocity.Furthermore,the proposed method has the potential for broader application in other perforating charges with varying liner shapes.This study provides a comprehensive and efficient solution for calculating jet velocity,which facilitates optimizing perforating charge structures and calculating penetration depth.展开更多
Polyoxometalates(POMs)are molecular metal-oxide clusters with precise chemical composition and architecture.Besides their bioactivities,electron-rich POMs have shown potential for enhancing synergistic therapy,such as...Polyoxometalates(POMs)are molecular metal-oxide clusters with precise chemical composition and architecture.Besides their bioactivities,electron-rich POMs have shown potential for enhancing synergistic therapy,such as photothermal therapy(PTT),photodynamic therapy(PDT),and chemo-dynamic therapy(CDT),through near-infrared region(NIR)absorption and redox reactions.展开更多
It is characteristic of our post-structuralist age not only to analyse existing institutions in a deconstructive manner,but also to review the underlying concepts and structures that were and are shaped by its actors....It is characteristic of our post-structuralist age not only to analyse existing institutions in a deconstructive manner,but also to review the underlying concepts and structures that were and are shaped by its actors.That this equally applies to the research object,Graeco-Roman(and overall,Western)antiquity,and those who researched it as ancient historians and classicists,follows the conceptualization of History as an academic and scientific discipline as formulated by Johann Gustav Droysen,who emphasized in his Outline of the Principles of History(Grundriss der Historik)that historical research aims at understanding the past under the limitations of present sources.展开更多
A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness...A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness,under a wide blowing ratio range(M=0.25–1.5).Three kinds of holes(Cylindrical Hole(CH),Fan-Shaped Hole(FSH),and Crater-Shaped Hole(CSH))are taken into consideration.The SDR shows an inherent affecting mechanism on the mutual interaction of jet-in-crossflow.It aggravates the lateral spreading of cooling jet and thus improves the film cooling uniformity significantly,regardless of film-hole shape and blowing ratio.When the blowing ratio is beyond 1.0,the combined effect of shaped holes and SDR on improving film cooling effectiveness behaves more significantly.It is suggested that FSH-SDR is a most favorable film cooling scheme.For FSH-SDR case,the spatially-averaged film cooling effectiveness is increased monotonously with the increase of blowing ratio,among the present bowing ratio range.展开更多
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co...To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.11572159).
文摘The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
基金funded by the National Natural Science Founda-tion of China(52071109).
文摘Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.
基金supported by the"Fundamental Research Funds for the Central Universities"(Grant No.30924010801).
文摘In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.
基金supported by the Ministère des Armées,and the Agence de l'Innovation de Défense(AID).
文摘An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.
基金supported by the National Natural Science Foundation of China(Nos.62475121 and 62335012)。
文摘A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.
基金supported by the Ministère des Arméesthe Agence de l'Innovation de Défense (AID)
文摘The Explosive Reactive Armors(ERA)are really efficient at reducing Shaped Charge Jet(SCJ)performance.The main destabilizing mechanism is the transverse movement of the front and rear moving plates(MP)on the SCJ.Therefore,a good understanding of the interaction SCJ/MP is essential for improving both weapon and armor systems.In a previous article,we have shown that interaction regimes are mainly influenced by the local collision geometry.Thus,in the collision point frame,the angle of collision be-tween the continuous SCJ and the MP is a key parameter.This flow angle is acute for the Backward Moving plate(BMP)moving against the SCJ and obtuse for the Forward Moving Plate(FMP)moving alongside it.In the former,the jet is simply deflected,which is the regime 1 of deflection.In the latter,the interaction turns on an alternative creation of fragment and ligament,which is the regime 2.Fragments are parts of the jet that are only slightly deflected while ligaments are the curved material bridges that connect two consecutive fragments.When stretching,the jet is systematically subject to instabilities that disturb its surface,creating necks along it.Their growth finally leads to the jet fragmentation.In this article,we focus on this jet distur-bance and its consequences on the SCJ/MP interaction.An experimental set-up was built to implement the interaction between a SCJ and a moving plate for different collision points,at different stand-off distances.The plate can interact with a smooth SCJ or a disturbed SCJ at a close and a far stand-off distance,respectively.One of the main results is the visualization of a regime change in SCJ/BMP interaction.A regime 1(deflection)interaction changes into a ligament regime interaction(similar to a FMP regime 2)when the collision point stand-off is increased.It is proposed that this change can be attributed as the increase of the amplitude of the jet surface disturbances.This phenomenon is well captured by the gSPH simula-tions.Finally,using both experimental and numerical approaches,we propose a new detailed analysis of the different phenomena occurring during the interaction between a disturbed-surface jet and a moving plate.Interaction regime changes are linked to jet local geometry changes.The interactions of a BMP with a smooth SCJ or with a disturbed surface SCJ are geometrically not the same and,thus,generate different local flows and interaction mechanisms.However,some other simulations have been carried out with constant velocity jet whose surface has been previously disturbed.These simulations underline the influence of both disturbance wavelength l and amplitude A on the interaction regimes.Surface disturbances of the SCJ,linked to its stretching,have a major influence on its interaction with a moving plate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12274230)the Funding of Nanjing University of Science and Technology (Grant No. TSXK2022D005)。
文摘The attosecond extreme ultraviolet(XUV) pulse pump and femtosecond infrared(IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption(ATA) spectra of microscopic systems. In a recent report [Proc. Natl. Acad. Sci. USA 121 e2307836121(2024)], we showed that shaped XUV pulses with spectral minima can significantly alter the absorption line shape of helium's 2s2p doubly excited state within a few tens of attoseconds.However, it remains unclear if similar effects could be observed in a singly excited state. In this study, we use shaped XUV pulses to excite helium's 2p singly excited state and couple the 2p and 3d states with a delayed IR pulse. Comparing these results with those from Gaussian XUV pulses, we find that the ATA spectra for the shaped XUV pulses exhibit more pronounced changes with delay, while the changes for the Gaussian pulses are gradual. We also explain these differences through population changes and analytical models. Our findings show that shaped XUV pulses can regulate the dynamics and absorption spectra of a singly excited state.
基金funded by the Swedish Armed Forces under Contract No AT.9220620。
文摘Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet.
基金supported by the National Key R&D Program of China(No.2017YFB1103200).
文摘Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material hot forging die with high precision,superior per-formance,and conformal cooling channels is developed.This improves the toughness of the die cavity and reduces the working temperature,thereby forming an isothermal field,which is an effective method to enhance the lifespan of the hot forging die.Three kinds of gradient flux-cored wires are designed for the surface of 5CrNiMo steel,and the microstructure and mechanical properties between gradient interfaces were studied.Based on the spatial curved structure of shaped waterways in the hot forging die cavity,a study was conducted on the strategy of partitioned forming for the manufacturing of the die with shaped waterways.In order to avoid interference with the arc gun,the hot for-ging die is divided into four regions,namely the transition region,upper,middle,and lower region,based on a combination of cavity depth and internal U-shaped and quadrilateral structures.The results show that the developed flux-cored wires have good moldability with straight sides of deposited metal under different process parameters and flat surface without cracks,pores and other defects.Under the same working conditions,the life of hot forging die formed by the gradient materials is more than multiple times that of the single material hot forging die,and the temperature gradient field of the shaped waterway die is 7℃/cm smaller than that of traditional straight waterway.
基金supported by the NSFC Basic Science Center Program for"Multi-scale Problems in Nonlinear Mechanics" (Grant No.11988102)the NSFC (Grant Nos.U2141204,12172367)+2 种基金the Key Research Program of the Chinese Academy of Sciences (Grant No.ZDRW-CN-2021-2-3)the National Key Research and Development Program of China (Grant No.2022YFC3320504-02)the opening project of State Key Laboratory of Explosion Science and Technology (Grant No.KFJJ21-01 and No.KFJJ18-14 M)。
文摘Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.
文摘Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.
基金supported by the National Natural Science Foundation of China (Nos.52305477,52375447,52305474)Major Special Projects of Aero-engine and Gas Turbine (No.2017-VII-0002-0095)+4 种基金the Special Fund of Taishan Scholars Project (No.tsqn202211179)the Youth Talent Promotion Project in Shandong (No.SDAST2021qt12)the Natural Science Foundation of Shandong Province (Nos.ZR2023QE057,ZR2022QE028,ZR2021QE116,and ZR2020KE027)Qingdao Science and Technology Planning Park Cultivation Plan (No.23-1-5-yqpy-17-qy)the Natural Science Foundation of Jiangsu Province (No.BK20210407).
文摘The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge.The high machining requirements of future aeroengine turbine disc slots will be difficult to satisfy using the broaching method.In addition,existing methods of slot machin-ing face difficulties in ensuring surface integrity.This study explored a cup shaped electroplated Cubic Boron Nitride(CBN)abrasive wheel for profile grinding the turbine disc slots of FGH96 powder metallurgy superalloy.The matrix structure of the cup shaped abrasive wheel was designed and verified.A profile grinding experiment was conducted for fir-tree slots on a five-axis machining center.The accuracy and the surface integrity were analyzed.Results show that the key dimension detection results of the slots were within the allowable tolerance range.Meanwhile,an average sur-face roughness Ra of 0.55μm was achieved,the residual stress was compressive,the plastic defor-mation layer thickness was less than 5μm,and the hardening layer thickness was less than 20μm.The research findings provide a new approach to machining the slots of aviation engine turbine discs and guidance for the high-quality processing of complex components.
基金National Key Research and Development Program of China(2022YFC2009600,2022YFC2009605)National Natural Science Foundation of China(81973133)。
文摘Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.
基金supported by the National Key R&D Program of China(2020YFA0711802)。
文摘The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is influenced by the design of the perforation charge and the strength characteristics of the rock material.However,as a crucial objective function for optimizing perforating charge structures,jet velocity lacks a rapid and accurate calculating method.This article addresses this issue by proposing an improved collapse velocity model using the DP46RDX42-Y perforating charge as a case study.It presents a novel approach for calculating jet velocity based on the unsteady Pugh-Eichelberger-Rostoker(PER)theory.To validate the effectiveness of the proposed method and analyze the impact of different characteristic parameters on jet tip velocity,a series of numerical simulations were conducted using LS-DYNA software combined with Arbitrary Lagrange-Euler(ALE)techniques.Results indicate excellent agreement between the proposed method and the numerical results,demonstrating its superiority over the traditional Gurney formula with an impressive 34.15%increase in accuracy.Notably,this method is particularly suitable for perforating charges with low detonation velocity.Increasing the liner density and decreasing the liner thickness and cone angle is recommended to achieve higher jet tip velocity.Furthermore,the proposed method has the potential for broader application in other perforating charges with varying liner shapes.This study provides a comprehensive and efficient solution for calculating jet velocity,which facilitates optimizing perforating charge structures and calculating penetration depth.
基金supported by the National Natural Science Foundation of China(Grant Nos.:92261203,21971106,22171073,22101118,and 22201123)the Central Guided Science and Technology Development Foundation of Liaoning Province,China(Grant No.:2022 JH6/100100036)+1 种基金the Start-up Fund from Southern University of Science and Technology(SUSTech),China,the Stable Support Plan Program of Shenzhen Natural Science Fund,China(Program Contract No.:20200925161141006)the Shenzhen Nobel Prize Scientists Laboratory Project(Shenzhen Grubbs Institute),China(Project No.:C17783101).
文摘Polyoxometalates(POMs)are molecular metal-oxide clusters with precise chemical composition and architecture.Besides their bioactivities,electron-rich POMs have shown potential for enhancing synergistic therapy,such as photothermal therapy(PTT),photodynamic therapy(PDT),and chemo-dynamic therapy(CDT),through near-infrared region(NIR)absorption and redox reactions.
文摘It is characteristic of our post-structuralist age not only to analyse existing institutions in a deconstructive manner,but also to review the underlying concepts and structures that were and are shaped by its actors.That this equally applies to the research object,Graeco-Roman(and overall,Western)antiquity,and those who researched it as ancient historians and classicists,follows the conceptualization of History as an academic and scientific discipline as formulated by Johann Gustav Droysen,who emphasized in his Outline of the Principles of History(Grundriss der Historik)that historical research aims at understanding the past under the limitations of present sources.
基金financial support for this project from the National Natural Science Foundation of China(No.U1508212)National Science and Technology Major Projects(Nos.2017-Ⅲ-0011-0025 and 2017-Ⅲ0011-0037)。
文摘A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness,under a wide blowing ratio range(M=0.25–1.5).Three kinds of holes(Cylindrical Hole(CH),Fan-Shaped Hole(FSH),and Crater-Shaped Hole(CSH))are taken into consideration.The SDR shows an inherent affecting mechanism on the mutual interaction of jet-in-crossflow.It aggravates the lateral spreading of cooling jet and thus improves the film cooling uniformity significantly,regardless of film-hole shape and blowing ratio.When the blowing ratio is beyond 1.0,the combined effect of shaped holes and SDR on improving film cooling effectiveness behaves more significantly.It is suggested that FSH-SDR is a most favorable film cooling scheme.For FSH-SDR case,the spatially-averaged film cooling effectiveness is increased monotonously with the increase of blowing ratio,among the present bowing ratio range.
基金Supported by National Natural Science Foundation of China (No. 50878141)Hebei Natural Science Foundation,China (No. E2011202013)High School of Hebei Science and Technology Research Youth Foundation,China(No. Q2012083)
文摘To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.