Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ...In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.展开更多
Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts o...Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.展开更多
BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity va...BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.展开更多
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari...As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.展开更多
This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode sche...This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.展开更多
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg...Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.展开更多
Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducte...Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.展开更多
Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)pl...Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection.展开更多
Objective: With the increasing volume of trauma surgery, postoperative infections have garnered significant attention, as they not only affect patient outcomes but also raise healthcare costs and the risk of bacterial...Objective: With the increasing volume of trauma surgery, postoperative infections have garnered significant attention, as they not only affect patient outcomes but also raise healthcare costs and the risk of bacterial resistance. This study aims to analyze the microbial spectrum and antibiotic sensitivity of patients with postoperative infections in trauma surgery, providing a basis for clinical treatment and optimizing antibiotic usage strategies in this context. Methods: A retrospective analysis was conducted on patients with traumatic infections who were hospitalized in the departments of spine surgery, upper limb surgery, and lower limb surgery from January 2022 to December 2024. Bacterial culture-positive specimens were analyzed for bacterial species and antibiotic sensitivity. Results: A total of 804 traumatic infection specimens were submitted for testing, including 538 male patients (ages 2 - 95 years) and 266 female patients (ages 4 - 94 years). Among these, 267 cases showed positive culture results, with 172 males (ages 2 - 93 years) and 95 females (ages 4 - 94 years). A total of 153 strains of Gram-negative (G−) bacteria and 114 strains of Gram-positive (G+) bacteria were identified. Among G− bacteria, Escherichia coli was the most frequently isolated (40 strains), followed by Pseudomonas aeruginosa (28 strains) and Enterobacter cloacae (28 strains). Among G+ bacteria, Staphylococcus aureus was the most prevalent (75 strains), followed by Enterococcus faecalis (15 strains) and Streptococcus pyogenes (8 strains). Antibiotic sensitivity testing revealed that the resistance rate of Staphylococcus aureus to penicillin was as high as 93.33%, while the resistance rate of Escherichia coli to trimethoprim-sulfamethoxazole was 57.5%. Conclusion: The main pathogens responsible for postoperative infections in traumatology are Escherichia coli and Staphylococcus aureus, with significant antibiotic resistance. In clinical treatment, antibiotics should be selected rationally based on bacterial spectrum and resistance patterns to improve treatment efficacy.展开更多
While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensificati...While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity.展开更多
Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell...Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell carcinoma(ESCC)cells to cisplatin(DDP)is not well understood.Methods:Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability.5-Ethynyl-2′-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis.Clone formation assay,flow cytometry,Carboxyfluorescein diacetate succinimidyl ester fluorescent probes,and Transwell assay determined cell biological properties,and 2′,7′-Dichlorofluorescin diacetate(DCFH-DA)fluorescent probes detected oxidative stress levels.Signal transducer and activator of transcription 3(STAT3)/Notch pathway protein levels after GA and/or Interleukin-6(IL-6)intervention were examined through Western blot.Furthermore,a model for subcutaneous graft tumors was established in nude mice.Results:GA exerted suppressive effects on cell proliferation,and caused apoptosis of KYSE30 and TE-1 cells.IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells.In contrast,GA attenuated the effects of IL-6,while STAT3 or Notch inhibitor further enhanced the effects of GA,suggesting that GA inhibited the IL-6/STAT3/Notch pathway.Not only that,GA promoted oxidative stress and enhanced cell sensitivity to DDP both in vitro and in vivo.Conclusion:GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway.展开更多
OBJECTIVE:To observe and analysis of the influence of the 12 meridians on edema,the constant value of the detection of the thermal sensitivity was further verified,which provided a basis for the diagnosis and identifi...OBJECTIVE:To observe and analysis of the influence of the 12 meridians on edema,the constant value of the detection of the thermal sensitivity was further verified,which provided a basis for the diagnosis and identification of edema by the thermal sensitivity measurement method.METHODS:A total of 1426 patients who attended Doshisha University in Japan and Xi'an Chengxintang Clinic from March 2019 to March 2023 were selected for observation and analysis and divided into 3 groups according to their diseases;112 patients with edema in Group 1,488 symptomatic patients with non-edema in Group 2,and 826 asymptomatic subjects in Group 3.The Thermal Sensitivity Measurement was conducted in the twelve meridians and compared among the groups.Multivariate analysis was performed to estimate meridians useful for diagnosing edema.RESULTS:In the healthy physiological state,the value of thermal sensitivity is relatively constant,which may be affected by age factors.Through the stepwise analysis,left Taiyin lung,right Jueyin pericardium,left Shaoyang Sanjiao,bilateral Jueyin liver,right Shaoyang gallbladder,right Taiyang bladder,and right Shaoyin kidney were extracted as effective meridians for diagnosing edema.Its accuracy was high,with receiver operating characteristic,area under the curve(ROC AUC)of 96%.These findings were not incompatible with the edema-associated meridians in the Traditional Chinese Medicine.CONCLUSION:The thermal sensitivity measurement is thought to be useful in diagnosing edema and predicting prognosis by combining appropriate meridians.In the future,we will conduct more detailed research on how this method is useful for evaluating medical care and acupuncture treatments.展开更多
Pressure sensors are essential for a wide range of applica-tions,including health monitoring,industrial diagnostics,etc.However,achieving both high sensitivity and mechanical ability to withstand high pressure in a si...Pressure sensors are essential for a wide range of applica-tions,including health monitoring,industrial diagnostics,etc.However,achieving both high sensitivity and mechanical ability to withstand high pressure in a single material remains a significant challenge.This study introduces a high-performance cellulose hydrogel inspired by the biomi-metic layered porous structure of human skin.The hydrogel features a novel design composed of a soft layer with large macropores and a hard layer with small micropores,each of which contribute uniquely to its pressure-sensing capabilities.The macropores in the soft part facilitate significant deforma-tion and charge accumulation,providing exceptional sensitivity to low pressures.In contrast,the microporous structure in the hard part enhances pressure range,ensuring support under high pressures and preventing structural failure.The performance of hydrogel is further optimized through ion introduction,which improves its conductivity,and as well the sensitivity.The sensor demonstrated a high sensitivity of 1622kPa^(-1),a detec-tion range up to 160 kPa,excellent conductivity of 4.01 Sm^(-1),rapid response time of 33 ms,and a low detection limit of 1.6 Pa,outperforming most existing cellulose-based sensors.This innovative hierarchically porous architecture not only enhances the pressure-sensing performance but also offers a simple and effective approach for utilizing natural polymers in sensing technologies.The cellulose hydrogel demonstrates sig-nificant potential in both health monitoring and industrial applications,providing a sensitive,durable,and versatile solution for pressure sensing.展开更多
This paper deals with a chemotaxis-haptotaxis system with ECM-dependent sensitivity under the Neumann boundary conditions in a smooth bounded domain.It is shown that the system possesses a globally bounded solution un...This paper deals with a chemotaxis-haptotaxis system with ECM-dependent sensitivity under the Neumann boundary conditions in a smooth bounded domain.It is shown that the system possesses a globally bounded solution under some conditions.展开更多
Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have ...Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.展开更多
We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular align...We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup,we study the Autler-Townes(AT)splitting spectrum and optical response of probe transmission,and analyze their sensing effects.The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration.We achieve a sensitivity of 4.150(69)nV·cm^(-1)·Hz^(-1/2)at an LO microwave field strength of 1.74 mV/cm.This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.展开更多
Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of...Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.展开更多
We study the temporal dynamics of a photon-added SU(2)coherent state,involving vibrational bound states of an iodine molecule.The nonclassicality of Schrödinger cat-like and compass-like photon-added states of th...We study the temporal dynamics of a photon-added SU(2)coherent state,involving vibrational bound states of an iodine molecule.The nonclassicality of Schrödinger cat-like and compass-like photon-added states of this anharmonic potential is explored through the Mandel Q parameter and the negative region in their phase spaces.The Wigner phase space distribution is thoroughly studied for the photon-added molecular state and displayed for cat-and compass-like states.Generation and control of the sub-Planck interference structures become intriguing with photon addition.We ensure that the photon addition helps to improve the quantum sensitivity for a diatomic molecular system by comparing it between photon-added and photon-subtracted states.The detailed study of quantum sensitivity reveals that one can use a photon-added molecular wave packet as a probe to attain sensitivity to displacement that greatly exceeds the standard quantum limit.We also report that the nature of variation of the quantum sensitivity becomes qualitatively commensurate with that of the Wigner-negativity.展开更多
The mental health issues of college students have become an increasingly prominent social problem,exerting severe impacts on their academic performance and overall well-being.Early identification of Interpersonal Sens...The mental health issues of college students have become an increasingly prominent social problem,exerting severe impacts on their academic performance and overall well-being.Early identification of Interpersonal Sensitivity(IS)in students serves as an effective approach to detect psychological problems and provide timely intervention.In this study,958 freshmen from higher education institutions in Zhejiang Province were selected as participants.We proposed a Multi-Strategy Artemisinin Optimization(MSAO)algorithm by enhancing the Artemisinin Optimization(AO)framework through the integration of a group-guided elimination strategy and a two-stage consolidation strategy.Subsequently,the MSAO was combined with the Fuzzy K-Nearest Neighbor(FKNN)classifier to develop the bMSAO-FKNN predictive model for assessing college students’IS.The proposed algorithm’s efficacy was validated through the CEC 2017 benchmark test suite,while the model’s performance was evaluated on the IS dataset,achieving an accuracy rate of 97.81%.These findings demonstrate that the bMSAO-FKNN model not only ensures high predictive accuracy but also offers interpretability for IS prediction,making it a valuable tool for mental health monitoring in academic settings.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
基金supported by the National Natural Science Foundation of China(Grant No.12272369)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620101).
文摘In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.
基金funded by the National Key Research and Development Plan of China(No.2022YFE0127900)the National Natural Science Foundation of China(Nos.32071558,32171559)+2 种基金the Natural Science Foundation Key Project of Inner Mongolia Autonomous Region,China(No.2023ZD23)the Hulunbuir Science and Technology Plan Project(No.SF2022001)the Fundamental Research Funds of CAF(CAFYBB2023ZA002).
文摘Increasing temperatures and severe droughts threaten forest vitality globally.Prediction of forest response to climate change requires knowledge of the spatiotemporal patterns of monthly or seasonal climatic impacts on the growth of tree species,likely driven by local climatic aridity,climate trends,edaphic conditions,and the climatic adaption of tree species.The ability of tree species to cope with changing climate and the effects of environmental variables on growth trends and growth-climate relationships across diverse bioclimatic regions are still poorly understood for many species.This study investigated radial growth trends,interannual growth variability,and growth-climate sensitivity of two dominant tree species,Pinus tabulaeformis(PT)and Pinus sylvestris var.mongolica(PS),across a broad climatic gradient with a variety of soil properties in temperate Northern China.Using a network of 83 tree ring chronologies(54 for PT and 29 for PS)from 1971 to 2010,we documented that both species maintained constant growth trends at wet sites,while both displayed rapid declines at dry sites.We reported the species-specific drivers of spatial heterogeneity in growth trends,interannual growth variability,and growth-climate relationships.Calculated climatic variables and soil properties were identified as the most critical factors affecting the growth trends and growth-climate relationships.However,climatic variables play more essential roles than soil properties in determining the spatial heterogeneity of the growth-climate relationship.Lower clay content and higher soil nutrient regimes can exacerbate the moisture-related susceptibility of tree growth.Our findings highlight that soil properties emerged as important modulating factors to predict the drought vulnerability of forests in addition to climatic variables.Considering the continued climate warmingdrying trend in the future,both pines will face a more severe growth decline and increase in drought vulnerability at drier sites with lower clayed soil or higher nutrient regimes.
基金Supported by Science and Technology Innovation 2030-Major Projects,No.2021ZD0202000National Key Research and Development Program of China,No.2019YFA0706200+2 种基金National Natural Science Foundation of China,No.82371535Science and Technology Innovation Program of Hunan Province,No.2023RC3083Fundamental Research Funds for the Central Universities of Central South University,No.2023ZZTS0838.
文摘BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the Ministry of Science and Technology(MOST)Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62204235。
文摘This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.
基金financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
文摘Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
文摘Objective: We describe patients with MCS, the evolution of the Quick Environmental Exposure and Sensitivity Inventory (QEESI) score with a special focus on people whose fillings were removed. Methods: We have conducted a retrospective longitudinal cohort study in patients diagnosed with MCS and attended in the outpatient Internal Medicine department of the University Hospital of San Juan de Alicante, from January 1, 2008 to January 1, 2021. Sociodemographic, clinical, QEESI and treatment-related variables were collected. We performed descriptive and inferential analyses. Mixed linear models were used to analyze the QEESI. Calculations were carried out with an α error of 5%. Results: Thirty-three patients were included (72.7% women, mean age 56.2). MCS was mainly triggered by mercury (N = 20) and food intolerance (N = 22). The mean interval from symptoms onset was 120 months (SD 81.6). 114 QEESIs were analyzed: 82 (N = 17 without amalgams) and 32 (N = 16 with amalgams). In patients without amalgams, severity scores increased across all subscales except the masking index (vs. with amalgams). Mean scores for the group without amalgams (vs. with amalgams) were: chemical intolerance, 62.8 points (vs. 63.4 and 46.7);other intolerances, 52.7 points (vs. 62.8 and 50.3);symptom severity, 63.2 (vs. 76.7 and 63.3);masking index, 3.9 (vs. 3.2 and 2.8);and life impacts, 63.1 (vs. 58.4 and 49.8). Conclusion: The profile of patient with MCS is a middle-aged woman who is a frequent user of healthcare services, presents a long diagnostic delay and has borne a great personal, work and socioeconomic impact. The QEESI is useful for the clinical follow-up of patients, including the optimal treatment response in the case of amalgams. Clinical Significance: People affected by Multiple Chemical Sensitivity deserve the attention, understanding and help of health professionals and family members, to face an invisible illness for those who do not suffer from it. Support is needed and doctors must raise awareness, and make an effort to understand and address this pathology. We suggest that protocolized amalgam extraction in accredited and prepared centers can reduce symptoms and improve quality of life, generating clinical, personal, family, occupational, social and occupational benefits.
基金supported by the State Key Laboratory of Offshore Oil and Gas Exploitation, Open Fund Project (No. CCL2023RCPS0162RQN)the primary funding, National Natural Science Foundation of China (No. ZX20230400)
文摘Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection.
文摘Objective: With the increasing volume of trauma surgery, postoperative infections have garnered significant attention, as they not only affect patient outcomes but also raise healthcare costs and the risk of bacterial resistance. This study aims to analyze the microbial spectrum and antibiotic sensitivity of patients with postoperative infections in trauma surgery, providing a basis for clinical treatment and optimizing antibiotic usage strategies in this context. Methods: A retrospective analysis was conducted on patients with traumatic infections who were hospitalized in the departments of spine surgery, upper limb surgery, and lower limb surgery from January 2022 to December 2024. Bacterial culture-positive specimens were analyzed for bacterial species and antibiotic sensitivity. Results: A total of 804 traumatic infection specimens were submitted for testing, including 538 male patients (ages 2 - 95 years) and 266 female patients (ages 4 - 94 years). Among these, 267 cases showed positive culture results, with 172 males (ages 2 - 93 years) and 95 females (ages 4 - 94 years). A total of 153 strains of Gram-negative (G−) bacteria and 114 strains of Gram-positive (G+) bacteria were identified. Among G− bacteria, Escherichia coli was the most frequently isolated (40 strains), followed by Pseudomonas aeruginosa (28 strains) and Enterobacter cloacae (28 strains). Among G+ bacteria, Staphylococcus aureus was the most prevalent (75 strains), followed by Enterococcus faecalis (15 strains) and Streptococcus pyogenes (8 strains). Antibiotic sensitivity testing revealed that the resistance rate of Staphylococcus aureus to penicillin was as high as 93.33%, while the resistance rate of Escherichia coli to trimethoprim-sulfamethoxazole was 57.5%. Conclusion: The main pathogens responsible for postoperative infections in traumatology are Escherichia coli and Staphylococcus aureus, with significant antibiotic resistance. In clinical treatment, antibiotics should be selected rationally based on bacterial spectrum and resistance patterns to improve treatment efficacy.
基金supported by the National Natural Science Foundation of China[grant numbers 42192553 and 41922036]the Fundamental Research Funds for the Central Universities–Cemac“GeoX”Interdisciplinary Program[grant number 020714380207]。
文摘While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity.
基金Mechanistic Investigation into the Extraction,Purification,and Anti-Esophageal Cancer Effects of Gallic Acid Derived from Rhodiola crenulata(YLUKLM2023001).
文摘Background:Gallic acid(GA),a plant-derived polyphenol,possesses diverse biological functions such as reducing inflammation and against tumors.Currently,the influence of GA on the resistance of esophageal squamous cell carcinoma(ESCC)cells to cisplatin(DDP)is not well understood.Methods:Cell counting kit-8 assay examined how GA affected KYSE30 and TE-1 cell viability.5-Ethynyl-2′-deoxyuridine and TdT-mediated dUTP Nick-End labeling staining detected cell proliferation and apoptosis.Clone formation assay,flow cytometry,Carboxyfluorescein diacetate succinimidyl ester fluorescent probes,and Transwell assay determined cell biological properties,and 2′,7′-Dichlorofluorescin diacetate(DCFH-DA)fluorescent probes detected oxidative stress levels.Signal transducer and activator of transcription 3(STAT3)/Notch pathway protein levels after GA and/or Interleukin-6(IL-6)intervention were examined through Western blot.Furthermore,a model for subcutaneous graft tumors was established in nude mice.Results:GA exerted suppressive effects on cell proliferation,and caused apoptosis of KYSE30 and TE-1 cells.IL-6 intervention activated the STAT3/Notch pathway and promoted the malignant biological properties of ESCC cells.In contrast,GA attenuated the effects of IL-6,while STAT3 or Notch inhibitor further enhanced the effects of GA,suggesting that GA inhibited the IL-6/STAT3/Notch pathway.Not only that,GA promoted oxidative stress and enhanced cell sensitivity to DDP both in vitro and in vivo.Conclusion:GA suppresses the malignant progression of ESCC and enhances cell sensitivity to DDP by hindering the IL-6/STAT3/Notch pathway.
文摘OBJECTIVE:To observe and analysis of the influence of the 12 meridians on edema,the constant value of the detection of the thermal sensitivity was further verified,which provided a basis for the diagnosis and identification of edema by the thermal sensitivity measurement method.METHODS:A total of 1426 patients who attended Doshisha University in Japan and Xi'an Chengxintang Clinic from March 2019 to March 2023 were selected for observation and analysis and divided into 3 groups according to their diseases;112 patients with edema in Group 1,488 symptomatic patients with non-edema in Group 2,and 826 asymptomatic subjects in Group 3.The Thermal Sensitivity Measurement was conducted in the twelve meridians and compared among the groups.Multivariate analysis was performed to estimate meridians useful for diagnosing edema.RESULTS:In the healthy physiological state,the value of thermal sensitivity is relatively constant,which may be affected by age factors.Through the stepwise analysis,left Taiyin lung,right Jueyin pericardium,left Shaoyang Sanjiao,bilateral Jueyin liver,right Shaoyang gallbladder,right Taiyang bladder,and right Shaoyin kidney were extracted as effective meridians for diagnosing edema.Its accuracy was high,with receiver operating characteristic,area under the curve(ROC AUC)of 96%.These findings were not incompatible with the edema-associated meridians in the Traditional Chinese Medicine.CONCLUSION:The thermal sensitivity measurement is thought to be useful in diagnosing edema and predicting prognosis by combining appropriate meridians.In the future,we will conduct more detailed research on how this method is useful for evaluating medical care and acupuncture treatments.
基金supported by the National Natural Science Foundation of China(51973166,52373097)Beijing Natural Science Foundation(2232064)。
文摘Pressure sensors are essential for a wide range of applica-tions,including health monitoring,industrial diagnostics,etc.However,achieving both high sensitivity and mechanical ability to withstand high pressure in a single material remains a significant challenge.This study introduces a high-performance cellulose hydrogel inspired by the biomi-metic layered porous structure of human skin.The hydrogel features a novel design composed of a soft layer with large macropores and a hard layer with small micropores,each of which contribute uniquely to its pressure-sensing capabilities.The macropores in the soft part facilitate significant deforma-tion and charge accumulation,providing exceptional sensitivity to low pressures.In contrast,the microporous structure in the hard part enhances pressure range,ensuring support under high pressures and preventing structural failure.The performance of hydrogel is further optimized through ion introduction,which improves its conductivity,and as well the sensitivity.The sensor demonstrated a high sensitivity of 1622kPa^(-1),a detec-tion range up to 160 kPa,excellent conductivity of 4.01 Sm^(-1),rapid response time of 33 ms,and a low detection limit of 1.6 Pa,outperforming most existing cellulose-based sensors.This innovative hierarchically porous architecture not only enhances the pressure-sensing performance but also offers a simple and effective approach for utilizing natural polymers in sensing technologies.The cellulose hydrogel demonstrates sig-nificant potential in both health monitoring and industrial applications,providing a sensitive,durable,and versatile solution for pressure sensing.
基金Supported by the National Natural Science Foundation of China(11301419)the Research and innovation Team of China West Normal University(CXTD2020-5)。
文摘This paper deals with a chemotaxis-haptotaxis system with ECM-dependent sensitivity under the Neumann boundary conditions in a smooth bounded domain.It is shown that the system possesses a globally bounded solution under some conditions.
基金financially supported by the National Key R&D Program of China (2022YFE0197100, 2023YFB4603500)Shenzhen Science and Technology Innovation Commission (KQTD20190929172505711)+1 种基金supported by MOE SUTD Kickstarter initiative (SKI2021_02_16)Singapore Ministry of Education academic research grant Tier 2 (MOE-T2EP50121-0007).
文摘Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.
基金supported by the Natural Science Foundation of Chongqing,China(Grant Nos.CSTB2024NSCQ-MSX0880 and CSTB2024NSCQ-MSX1187)the Fund from Chongqing University of Posts and Telecommunications(Grants Nos.A2024-33 and A2023-54).
文摘We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup,we study the Autler-Townes(AT)splitting spectrum and optical response of probe transmission,and analyze their sensing effects.The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration.We achieve a sensitivity of 4.150(69)nV·cm^(-1)·Hz^(-1/2)at an LO microwave field strength of 1.74 mV/cm.This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.
基金Supported by the Green Plant Protection Project(213010801)the Heilongjiang Provincial Key R&D Program Projects(20232X02B0502)。
文摘Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.
文摘We study the temporal dynamics of a photon-added SU(2)coherent state,involving vibrational bound states of an iodine molecule.The nonclassicality of Schrödinger cat-like and compass-like photon-added states of this anharmonic potential is explored through the Mandel Q parameter and the negative region in their phase spaces.The Wigner phase space distribution is thoroughly studied for the photon-added molecular state and displayed for cat-and compass-like states.Generation and control of the sub-Planck interference structures become intriguing with photon addition.We ensure that the photon addition helps to improve the quantum sensitivity for a diatomic molecular system by comparing it between photon-added and photon-subtracted states.The detailed study of quantum sensitivity reveals that one can use a photon-added molecular wave packet as a probe to attain sensitivity to displacement that greatly exceeds the standard quantum limit.We also report that the nature of variation of the quantum sensitivity becomes qualitatively commensurate with that of the Wigner-negativity.
文摘The mental health issues of college students have become an increasingly prominent social problem,exerting severe impacts on their academic performance and overall well-being.Early identification of Interpersonal Sensitivity(IS)in students serves as an effective approach to detect psychological problems and provide timely intervention.In this study,958 freshmen from higher education institutions in Zhejiang Province were selected as participants.We proposed a Multi-Strategy Artemisinin Optimization(MSAO)algorithm by enhancing the Artemisinin Optimization(AO)framework through the integration of a group-guided elimination strategy and a two-stage consolidation strategy.Subsequently,the MSAO was combined with the Fuzzy K-Nearest Neighbor(FKNN)classifier to develop the bMSAO-FKNN predictive model for assessing college students’IS.The proposed algorithm’s efficacy was validated through the CEC 2017 benchmark test suite,while the model’s performance was evaluated on the IS dataset,achieving an accuracy rate of 97.81%.These findings demonstrate that the bMSAO-FKNN model not only ensures high predictive accuracy but also offers interpretability for IS prediction,making it a valuable tool for mental health monitoring in academic settings.