期刊文献+
共找到3,930篇文章
< 1 2 197 >
每页显示 20 50 100
Efficient Method for Trademark Image Retrieval: Leveraging Siamese and Triplet Networks with Examination-Informed Loss Adjustment
1
作者 Thanh Bui-Minh Nguyen Long Giang Luan Thanh Le 《Computers, Materials & Continua》 2025年第7期1203-1226,共24页
Image-based similar trademark retrieval is a time-consuming and labor-intensive task in the trademark examination process.This paper aims to support trademark examiners by training Deep Convolutional Neural Network(DC... Image-based similar trademark retrieval is a time-consuming and labor-intensive task in the trademark examination process.This paper aims to support trademark examiners by training Deep Convolutional Neural Network(DCNN)models for effective Trademark Image Retrieval(TIR).To achieve this goal,we first develop a novel labeling method that automatically generates hundreds of thousands of labeled similar and dissimilar trademark image pairs using accompanying data fields such as citation lists,Vienna classification(VC)codes,and trademark ownership information.This approach eliminates the need for manual labeling and provides a large-scale dataset suitable for training deep learning models.We then train DCNN models based on Siamese and Triplet architectures,evaluating various feature extractors to determine the most effective configuration.Furthermore,we present an Adapted Contrastive Loss Function(ACLF)for the trademark retrieval task,specifically engineered to mitigate the influence of noisy labels found in automatically created datasets.Experimental results indicate that our proposed model(Efficient-Net_v21_Siamese)performs best at both True Negative Rate(TNR)threshold levels,TNR 0.9 and TNR 0.95,with==respective True Positive Rates(TPRs)of 77.7%and 70.8%and accuracies of 83.9%and 80.4%.Additionally,when testing on the public trademark dataset METU_v2,our model achieves a normalized average rank(NAR)of 0.0169,outperforming the current state-of-the-art(SOTA)model.Based on these findings,we estimate that considering only approximately 10%of the returned trademarks would be sufficient,significantly reducing the review time.Therefore,the paper highlights the potential of utilizing national trademark data to enhance the accuracy and efficiency of trademark retrieval systems,ultimately supporting trademark examiners in their evaluation tasks. 展开更多
关键词 TRADEMARK image retrieval similar search similar retrieval content-based image retrieval similar ranking contrastive learning Siamese TRIPLET citation list
在线阅读 下载PDF
EffNet-CNN:A Semantic Model for Image Mining&Content-Based Image Retrieval
2
作者 Rajendran Thanikachalam Anandhavalli Muniasamy +1 位作者 Ashwag Alasmari Rajendran Thavasimuthu 《Computer Modeling in Engineering & Sciences》 2025年第5期1971-2000,共30页
Content-Based Image Retrieval(CBIR)and image mining are becoming more important study fields in computer vision due to their wide range of applications in healthcare,security,and various domains.The image retrieval sy... Content-Based Image Retrieval(CBIR)and image mining are becoming more important study fields in computer vision due to their wide range of applications in healthcare,security,and various domains.The image retrieval system mainly relies on the efficiency and accuracy of the classification models.This research addresses the challenge of enhancing the image retrieval system by developing a novel approach,EfficientNet-Convolutional Neural Network(EffNet-CNN).The key objective of this research is to evaluate the proposed EffNet-CNN model’s performance in image classification,image mining,and CBIR.The novelty of the proposed EffNet-CNN model includes the integration of different techniques and modifications.The model includes the Mahalanobis distance metric for feature matching,which enhances the similarity measurements.The model extends EfficientNet architecture by incorporating additional convolutional layers,batch normalization,dropout,and pooling layers for improved hierarchical feature extraction.A systematic hyperparameter optimization using SGD,performance evaluation with three datasets,and data normalization for improving feature representations.The EffNet-CNN is assessed utilizing precision,accuracy,F-measure,and recall metrics across MS-COCO,CIFAR-10 and 100 datasets.The model achieved accuracy values ranging from 90.60%to 95.90%for the MS-COCO dataset,96.8%to 98.3%for the CIFAR-10 dataset and 92.9%to 98.6%for the CIFAR-100 dataset.A validation of the EffNet-CNN model’s results with other models reveals the proposed model’s superior performance.The results highlight the potential of the EffNet-CNN model proposed for image classification and its usefulness in image mining and CBIR. 展开更多
关键词 image mining CBIR semantic features EffNet-CNN image retrieval
在线阅读 下载PDF
Secure Medical Image Retrieval Based on Multi-Attention Mechanism and Triplet Deep Hashing
3
作者 Shaozheng Zhang Qiuyu Zhang +1 位作者 Jiahui Tang Ruihua Xu 《Computers, Materials & Continua》 2025年第2期2137-2158,共22页
Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third... Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality. 展开更多
关键词 Secure medical image retrieval multi-attention mechanism triplet deep hashing image enhancement lightweight image encryption
在线阅读 下载PDF
Multi-Scale Vision Transformer with Dynamic Multi-Loss Function for Medical Image Retrieval and Classification
4
作者 Omar Alqahtani Mohamed Ghouse +2 位作者 Asfia Sabahath Omer Bin Hussain Arshiya Begum 《Computers, Materials & Continua》 2025年第5期2221-2244,共24页
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi... This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison. 展开更多
关键词 Medical image retrieval vision transformer multi-scale encoding multi-loss function ISIC-2018 ChestX-ray14
在线阅读 下载PDF
A Survey of Crime Scene Investigation Image Retrieval Using Deep Learning
5
作者 Ying Liu Aodong Zhou +1 位作者 Jize Xue Zhijie Xu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期271-286,共16页
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep... Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field. 展开更多
关键词 crime scene investigation(CSI)image image retrieval deep learning
在线阅读 下载PDF
Importance-aware 3D volume visualization for medical content-based image retrieval-a preliminary study
6
作者 Mingjian LI Younhyun JUNG +1 位作者 Michael FULHAM Jinman KIM 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期71-81,共11页
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di... Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset. 展开更多
关键词 Volume visualization DVR Medical CBIR retrieval Medical images
在线阅读 下载PDF
Brain Tumor Retrieval in MRI Images with Integration of Optimal Features
7
作者 N V Shamna B Aziz Musthafa 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第6期71-83,共13页
This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditio... This paper presents an approach to improve medical image retrieval, particularly for brain tumors, by addressing the gap between low-level visual and high-level perceived contents in MRI, X-ray, and CT scans. Traditional methods based on color, shape, or texture are less effective. The proposed solution uses machine learning to handle high-dimensional image features, reducing computational complexity and mitigating issues caused by artifacts or noise. It employs a genetic algorithm for feature reduction and a hybrid residual UNet(HResUNet) model for Region-of-Interest(ROI) segmentation and classification, with enhanced image preprocessing. The study examines various loss functions, finding that a hybrid loss function yields superior results, and the GA-HResUNet model outperforms the HResUNet. Comparative analysis with state-of-the-art models shows a 4% improvement in retrieval accuracy. 展开更多
关键词 medical images brain MRI machine learning feature extraction and reduction content-based image retrieval(CBIR)
暂未订购
A Visual Indoor Localization Method Based on Efficient Image Retrieval
8
作者 Mengyan Lyu Xinxin Guo +1 位作者 Kunpeng Zhang Liye Zhang 《Journal of Computer and Communications》 2024年第2期47-66,共20页
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l... The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method. 展开更多
关键词 Visual Indoor Positioning Feature Point Matching image retrieval Position Calculation Five-Point Method
在线阅读 下载PDF
Auto-expanded multi query examples technology in content-based image retrieval 被引量:1
9
作者 王小玲 谢康林 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期287-292,共6页
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ... In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms. 展开更多
关键词 content-based image retrieval SEMANTIC multi query examples K-means clustering
在线阅读 下载PDF
Active learning based on maximizing information gain for content-based image retrieval
10
作者 徐杰 施鹏飞 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期431-435,共5页
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac... This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations. 展开更多
关键词 active learning content-based image retrieval relevance feedback support vector machines similarity measure
在线阅读 下载PDF
A Comprehensive Review of Pill Image Recognition
11
作者 Linh Nguyen Thi My Viet-Tuan Le +1 位作者 Tham Vo Vinh Truong Hoang 《Computers, Materials & Continua》 2025年第3期3693-3740,共48页
Pill image recognition is an important field in computer vision.It has become a vital technology in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and ensur... Pill image recognition is an important field in computer vision.It has become a vital technology in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and ensure patient safety.This survey examines the current state of pill image recognition,focusing on advancements,methodologies,and the challenges that remain unresolved.It provides a comprehensive overview of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and aims to explore the ongoing difficulties in the field.We summarize and classify the methods used in each article,compare the strengths and weaknesses of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and review benchmark datasets for pill image recognition.Additionally,we compare the performance of proposed methods on popular benchmark datasets.This survey applies recent advancements,such as Transformer models and cutting-edge technologies like Augmented Reality(AR),to discuss potential research directions and conclude the review.By offering a holistic perspective,this paper aims to serve as a valuable resource for researchers and practitioners striving to advance the field of pill image recognition. 展开更多
关键词 Pill image recognition pill image identification pill recognition pill identification pill image retrieval pill retrieval computer vision
在线阅读 下载PDF
An Angle Structure Descriptor for Image Retrieval 被引量:3
12
作者 Meng Zhao Huaxiang Zhang Lili Meng 《China Communications》 SCIE CSCD 2016年第8期222-230,共9页
This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle str... This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle structures are defined in local blocks. Combining color information in HSV color space, we use angle structures to detect images. The internal correlations between neighboring pixels in angle structures are explored to form a feature vector. With angle structures as bridges, ASD extracts image features by integrating multiple information as a whole, such as color, texture, shape and spatial layout information. In addition, the proposed algorithm is efficient for image retrieval without any clustering implementation or model training. Experimental results demonstrate that ASD outperforms the other related algorithms. 展开更多
关键词 image retrieval angle structure descriptor HSV color space local descriptor
在线阅读 下载PDF
A flower image retrieval method based on ROI feature 被引量:6
13
作者 洪安祥 陈刚 +2 位作者 李均利 池哲儒 张亶 《Journal of Zhejiang University Science》 CSCD 2004年第7期764-772,共9页
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower... Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999). 展开更多
关键词 Flower image retrieval Knowledge-driven segmentation Flower image characterization Region-of-Interest (ROI) Color features Shape features
在线阅读 下载PDF
Image Retrieval Based on Vision Transformer and Masked Learning 被引量:6
14
作者 李锋 潘煌圣 +1 位作者 盛守祥 王国栋 《Journal of Donghua University(English Edition)》 CAS 2023年第5期539-547,共9页
Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number... Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively. 展开更多
关键词 content-based image retrieval vision transformer masked autoencoder feature extraction
在线阅读 下载PDF
An Efficient Content-Based Image Retrieval System Using kNN and Fuzzy Mathematical Algorithm 被引量:3
15
作者 Chunjing Wang Li Liu Yanyan Tan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期1061-1083,共23页
The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color His... The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems. 展开更多
关键词 Content-based image retrieval KNN fuzzy mathematical algorithm RECALL PRECISION
在线阅读 下载PDF
An Encrypted Image Retrieval Method Based on SimHash in Cloud Computing 被引量:3
16
作者 Jiaohua Qin Yusi Cao +3 位作者 Xuyu Xiang Yun Tan Lingyun Xiang Jianjun Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第4期389-399,共11页
With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expecte... With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art. 展开更多
关键词 Cloud computing SimHash encryption image retrieval K-MEANS
在线阅读 下载PDF
New Approach on the Techniques of Content-Based Image Retrieval (CBIR) Using Color, Texture and Shape Features 被引量:3
17
作者 Mohd Afizi Mohd Shukran Muhamad Naim Abdullah Mohd Sidek Fadhil Mohd Yunus 《Journal of Materials Science and Chemical Engineering》 2021年第1期51-57,共7页
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to... <div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div> 展开更多
关键词 Content-Based image retrieval image retrieval Information retrieval
在线阅读 下载PDF
Image retrieval based on color features integrated with anisotropic directionality 被引量:1
18
作者 Jing Bai Xiaohua Wang Licheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期127-133,共7页
A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram ... A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved. 展开更多
关键词 image retrieval color histogram directionlet transform ANISOTROPIC similarity.
在线阅读 下载PDF
Deep image retrieval using artificial neural network interpolation and indexing based on similarity measurement 被引量:3
19
作者 Faiyaz Ahmad 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第2期200-218,共19页
In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual ... In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual components,are used to appropriately index and retrieve comparable results.To differentiate an image in the category of qualifying contender,feature vectors must have image information's like colour,objects,shape,spatial viewpoints.Previous methods such as sketch-based image retrieval by salient contour(SBIR)and greedy learning of deep Boltzmann machine(GDBM)used spatial information to distinguish between image categories.This requires interest points and also feature analysis emerged image detection problems.Thus,a proposed model to overcome this issue and predict the repeating pattern as well as series of pixels that conclude similarity has been necessary.In this study,a technique called CBIR-similarity measure via artificial neural network interpolation(CBIR-SMANN)has been presented.By collecting datasets,the images are resized then subject to Gaussian filtering in the pre-processing stage,then by permitting them to the Hessian detector,the interesting points are gathered.Based on Skewness,mean,kurtosis and standard deviation features were extracted then given to ANN for interpolation.Interpolated results are stored in a database for retrieval.In the testing stage,the query image was inputted that is subjected to pre-processing,and feature extraction was then fed to the similarity measurement function.Thus,ANN helps to get similar images from the database.CBIR-SMANN have been implemented in the python tool and then evaluated for its performance.Results show that CBIR-SMANN exhibited a high recall value of 78%with a minimum retrieval time of 980 ms.This showed the supremacy of the proposed model was comparatively greater than the previous ones. 展开更多
关键词 Gaussian filtering Hessian detector image retrieval interpolation and similarity measurement repeating pattern
在线阅读 下载PDF
Content-based image retrieval applied to BI-RADS tissue classification in screening mammography 被引量:1
20
作者 Júlia Epischina Engrácia de Oliveira Arnaldo de Albuquerque Araújo Thomas M Deserno 《World Journal of Radiology》 CAS 2011年第1期24-31,共8页
AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classificat... AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.METHODS:Breast density is characterized by image texture using singular value decomposition(SVD) and histograms.Pattern similarity is computed by a support vector machine(SVM) to separate the four BI-RADS tissue categories.The crucial number of remaining singular values is varied(SVD),and linear,radial,and polynomial kernels are investigated(SVM).The system is supported by a large reference database for training and evaluation.Experiments are based on 5-fold cross validation.RESULTS:Adopted from DDSM,MIAS,LLNL,and RWTH datasets,the reference database is composed of over 10000 various mammograms with unified and reliable ground truth.An average precision of 82.14% is obtained using 25 singular values(SVD),polynomial kernel and the one-against-one(SVM).CONCLUSION:Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis. 展开更多
关键词 COMPUTER-AIDED diagnosis CONTENT-BASED image retrieval image processing Screening MAMMOGRAPHY SINGULAR value decomposition Support vector machine
暂未订购
上一页 1 2 197 下一页 到第
使用帮助 返回顶部