期刊文献+
共找到6,662篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the accurate calculation method of crater position in lunar surface images based on feature matching
1
作者 Yanning Zheng Xue Dong +5 位作者 Zhipeng Liang Jian Gao Bowen Guan Liyan Sun Xingwei Han He Dong 《Astronomical Techniques and Instruments》 2025年第4期265-273,共9页
Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achi... Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achieved by tracking stars in the all-sky region,we propose a processing scheme to select larger-sized lunar craters near the Lunar Corner Cube Retroreflector as reference features for telescope pointing bias computation.Accurately determining the position of the craters in the images is crucial for calculating the pointing bias;therefore,we propose a method for accurately calculating the crater position based on lunar surface feature matching.This method uses matched feature points obtained from image feature matching,using a deep learning method to solve the image transformation matrix.The known position of a crater in a reference image is mapped using this matrix to calculate the crater position in the target image.We validate this method using craters near the Lunar Corner Cube Retroreflectors of Apollo 15 and Luna 17 and find that the calculated position of a crater on the target image falls on the center of the crater,even for image features with large distortion near the lunar limb.The maximum image matching error is approximately 1″,and the minimum is only 0.47″,which meets the pointing requirements of Lunar Laser Ranging.This method provides a new technical means for the high-precision pointing bias calculation of the Lunar Laser Ranging system. 展开更多
关键词 Lunar Laser Ranging system High-precision pointing correction Lunar surface features image feature matching Deep learning Crater position calculation
在线阅读 下载PDF
ANTI-ROTATION AND ANTI-SCALE IMAGE MATCHING ALGORITHM FOR NAVIGATION SYSTEM 被引量:1
2
作者 冷雪飞 刘建业 +1 位作者 李明星 熊智 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期294-299,共6页
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q... Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system. 展开更多
关键词 log-polar transform edge feature matching inertial navigation system image matching
在线阅读 下载PDF
Feature detection and description for image matching:from hand-crafted design to deep learning 被引量:10
3
作者 Lin Chen Franz Rottensteiner Christian Heipke 《Geo-Spatial Information Science》 SCIE CSCD 2021年第1期58-74,I0009,共18页
In feature based image matching,distinctive features in images are detected and represented by feature descriptors.Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate p... In feature based image matching,distinctive features in images are detected and represented by feature descriptors.Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points.In this paper,we first shortly discuss the general frame-work.Then,we review feature detection as well as the determination of affine shape and orientation of local features,before analyzing feature description in more detail.In the feature description review,the general framework of local feature description is presented first.Then,the review discusses the evolution from hand-crafted feature descriptors,e.g.SIFT(Scale Invariant Feature Transform),to machine learning and deep learning based descriptors.The machine learning models,the training loss and the respective training data of learning-based algorithms are looked at in more detail;subsequently the various advantages and challenges of the different approaches are discussed.Finally,we present and assess some current research directions before concluding the paper. 展开更多
关键词 image matching affine shape estimation feature orientation descriptor learning image orientation
原文传递
Multi-focus image fusion based on block matching in 3D transform domain 被引量:6
4
作者 YANG Dongsheng HU Shaohai +2 位作者 LIU Shuaiqi MA Xiaole SUN Yuchao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期415-428,共14页
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ... Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods. 展开更多
关键词 image fusion block matching 3D transform block-matching and 3D(BM3D) non-subsampled Shearlet transform(NSST)
在线阅读 下载PDF
A reliable algorithm for image matching based on SIFT 被引量:4
5
作者 霍炬 杨宁 +1 位作者 曹茂永 杨明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第4期90-95,共6页
A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algo... A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate. 展开更多
关键词 image matching SIFT algorithm two-dimensional moment invariants disparity gradient
在线阅读 下载PDF
A Sequence Image Matching Method Based on Improved High-Dimensional Combined Features 被引量:2
6
作者 Leng Xuefei Gong Zhe +1 位作者 Fu Runzhe Liu Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期820-828,共9页
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim... Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes. 展开更多
关键词 SEQUENCE image matching navigation DELAUNAY TRIANGULATION HIGH-DIMENSIONAL combined feature k-nearest NEIGHBOR
在线阅读 下载PDF
A Fast Image Matching Algorithm Based on Yolov3 被引量:4
7
作者 LIU Rui LENG Xuefei LIU Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期807-815,共9页
In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm... In view of the fact that the traditional Hausdorff image matching algorithm is very sensitive to the image size as well as the unsatisfactory real-time performance in practical applications,an image matching algorithm is proposed based on the combination of Yolov3.Firstly,the features of the reference image are selected for pretraining,and then the training results are used to extract the features of the real images before the coordinates of the center points of the feature area are used to complete the coarse matching.Finally,the Hausdorff algorithm is used to complete the fine image matching.Experiments show that the proposed algorithm significantly improves the speed and accuracy of image matching.Also,it is robust to rotation changes. 展开更多
关键词 Yolov3 image matching Huasdorff two-stage matching
在线阅读 下载PDF
Underwater Image Bidirectional Matching for Localization Based on SIFT 被引量:6
8
作者 Yan Lin Bo Liu 《Journal of Marine Science and Application》 2014年第2期225-229,共5页
For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional im... For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional image registration strategy and mosaicing technique based on the scale invariant feature transform (SIFT) algorithm. The proposed method can help us observe the stern with a great visual angle for analyzing the performance of the control fins of the SWATH. SIFT is one of the most effective local features of the scale, rotation and illumination invariant. However, there are a few false match rates in this algorithm. In terms of underwater machine vision, only by acquiring an accurate match rate can we find an underwater robot rapidly and identify the location of the object. Therefore, firstly, the selection of the match ratio principle is put forward in this paper; secondly, some advantages of the bidirectional registration algorithm are concluded by analyzing the characteristics of the unidirectional matching method. Finally, an automatic underwater image splicing method is proposed on the basis of fixed dimension, and then the edge of the image's overlapping section is merged by the principal components analysis algorithm. The experimental results achieve a better registration and smooth mosaicing effect, demonstrating that the proposed method is effective. 展开更多
关键词 SWATH underwater image registration SIFT bidirectional matching strategy automatic stitching
在线阅读 下载PDF
Robust key point descriptor for multi-spectral image matching 被引量:3
9
作者 Yueming Qin Zhiguo Cao +1 位作者 Wen Zhuo Zhenghong Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期681-687,共7页
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile... Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors. 展开更多
关键词 collinear gradient-enhanced coding (CGEC) key pointdescriptor multi-spectral image matching.
在线阅读 下载PDF
A novel dense descriptor based on structure tensor voting for multi-modal image matching 被引量:6
10
作者 Jiazhen LU Maoqing HU +2 位作者 Jing DONG Songlai HAN Ang SU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第9期2408-2419,共12页
Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature des... Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods. 展开更多
关键词 Dense feature descriptor Remote sensing images Similarity measurement Structure tensor Template matching
原文传递
Geometric-constrained multi-view image matching method based on semi-global optimization 被引量:4
11
作者 Wenhao Zhao Li Yan Yunsheng Zhang 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期115-126,共12页
Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models,this paper presents a geometric-constrained multi-view image matching method,based on an energy min... Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models,this paper presents a geometric-constrained multi-view image matching method,based on an energy minimization framework.By employing a geometrical constraint,the cost value of the energy function was calculated from multiple images,and the cost value was aggregated in an image space using a semi-global optimization approach.A homography transform parameter calculation method is proposed for fast calculation of projection pixel on each image when calculation cost values.It is based on the known interior orientation parameters,exterior orientation parameters,and a given elevation value.For an efficient and reliable processing of multiple remote sensing images,the proposed matching method was performed via a coarse-to-fine strategy through image pyramid.Three sets of airborne remote sensing images were used to evaluate the performance of the proposed method.Results reveal that the multi-view image matching can improve matching reliability.Moreover,the experimental results show that the proposed method performs better than traditional methods. 展开更多
关键词 image matching multiview images semi-global optimization digital surface model(DSM)
原文传递
Speeded-Up Robust Feature Matching Algorithm Based on Image Improvement Technology 被引量:2
12
作者 Sharofiddin Allaberdiev Shokhrukh Yakhyoev +1 位作者 Rakhmatilla Fatkhullayev Jia Chen 《Journal of Computer and Communications》 2019年第12期1-10,共10页
Due to requirements and necessities in digital image research, image matching is considered as a key, essential and complicating point especially for machine learning. According to its convenience and facility, the mo... Due to requirements and necessities in digital image research, image matching is considered as a key, essential and complicating point especially for machine learning. According to its convenience and facility, the most applied algorithm for image feature point extraction and matching is Speeded-Up Robust Feature (SURF). The enhancement for scale invariant feature transform (SIFT) algorithm promotes the effectiveness of the algorithm as well as facilitates the possibility, while the application of the algorithm is being applied in a present time computer vision system. In this research work, the aim of SURF algorithm is to extract image features, and we have incorporated RANSAC algorithm to filter matching points. The images were juxtaposed and asserted experiments utilizing pertinent image improvement methods. The idea based on merging improvement technology through SURF algorithm is put forward to get better quality of feature points matching the efficiency and appropriate image improvement methods are adopted for different feature images which are compared and verified by experiments. Some results have been explained there which are the effects of lighting on the underexposed and overexposed images. 展开更多
关键词 image matching SURF ALGORITHM FEATURES of an image RANSAC ALGORITHM
在线阅读 下载PDF
Image matching algorithm based on SIFT using color and exposure information 被引量:9
13
作者 Yan Zhao Yuwei Zhai +1 位作者 Eric Dubois Shigang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期691-699,共9页
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera... Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT. 展开更多
关键词 scale invariant feature transform(SIFT) image matching color exposure
在线阅读 下载PDF
Modified SIFT descriptor and key-point matching for fast and robust image mosaic 被引量:2
14
作者 何玉青 王雪 +3 位作者 王思远 刘明奇 诸加丹 金伟其 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期562-570,共9页
To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, ... To improve the performance of the scale invariant feature transform ( SIFT), a modified SIFT (M-SIFT) descriptor is proposed to realize fast and robust key-point extraction and matching. In descriptor generation, 3 rotation-invariant concentric-ring grids around the key-point location are used instead of 16 square grids used in the original SIFT. Then, 10 orientations are accumulated for each grid, which results in a 30-dimension descriptor. In descriptor matching, rough rejection mismatches is proposed based on the difference of grey information between matching points. The per- formance of the proposed method is tested for image mosaic on simulated and real-worid images. Experimental results show that the M-SIFT descriptor inherits the SIFT' s ability of being invariant to image scale and rotation, illumination change and affine distortion. Besides the time cost of feature extraction is reduced by 50% compared with the original SIFT. And the rough rejection mismatches can reject at least 70% of mismatches. The results also demonstrate that the performance of the pro- posed M-SIFT method is superior to other improved SIFT methods in speed and robustness. 展开更多
关键词 modified scale invariant feature transform (SIFT) image mosaic feature extraction key-point matching
在线阅读 下载PDF
Fast M-fold matching pursuit algorithm for image approximation 被引量:1
15
作者 Gan Tao He Yanmin Zhu Weile 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期883-888,共6页
A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F... A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality. 展开更多
关键词 greedy algorithm image approximation matching pursuit
在线阅读 下载PDF
Fast matching pursuit for traffic images using differential evolution 被引量:1
16
作者 封晓强 何铁军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期193-198,共6页
To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of tra... To obtain the sparse decomposition and flexible representation of traffic images,this paper proposes a fast matching pursuit for traffic images using differential evolution. According to the structural features of traffic images,the introduced algorithm selects the image atoms in a fast and flexible way from an over-complete image dictionary to adaptively match the local structures of traffic images and therefore to implement the sparse decomposition. As compared with the traditional method and a genetic algorithm of matching pursuit by using extensive experiments,the differential evolution achieves much higher quality of traffic images with much less computational time,which indicates the effectiveness of the proposed algorithm. 展开更多
关键词 intelligent transportation system digital image processing matching pursuit differential evolution
在线阅读 下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
17
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
在线阅读 下载PDF
Robust multi-sensor image matching based on normalized self-similarity region descriptor 被引量:1
18
作者 Xuecong LIU Xichao TENG +3 位作者 Jing LUO Zhang LI Qifeng YU Yijie BIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期271-286,共16页
Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains... Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching. 展开更多
关键词 Remote sensing Multi-modal image matching Template matching Feature descriptor Similarity metric Synthetic Aperture Radar(SAR)
原文传递
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather 被引量:1
19
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
Image Relaxation Matching Based on Feature Points for DSM Generation 被引量:1
20
作者 ZHENG Shunyi ZHANG Zuxun ZHANG Jianqing 《Geo-Spatial Information Science》 2004年第4期243-248,共6页
In photogrammetry and remote sensing,image matching is a basic and crucial process for automatic DEM generation.In this paper we presented a image relaxation matching method based on feature points.This method can be ... In photogrammetry and remote sensing,image matching is a basic and crucial process for automatic DEM generation.In this paper we presented a image relaxation matching method based on feature points.This method can be considered as an extention of regular grid point based matching.It avoids the shortcome of grid point based matching.For example,with this method,we can avoid low or even no texture area where errors frequently appear in cross correlaton matching.In the mean while,it makes full use of some mature techniques such as probability relaxation,image pyramid and the like which have already been successfully used in grid point matching process.Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable. 展开更多
关键词 image matching probability relaxation feature point digital surface model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部