Isogeometric analysis(IGA),an approach that integrates CAE into conventional CAD design tools,has been used in structural optimization for 10 years,with plenty of excellent research results.This paper provides a compr...Isogeometric analysis(IGA),an approach that integrates CAE into conventional CAD design tools,has been used in structural optimization for 10 years,with plenty of excellent research results.This paper provides a comprehensive review on isogeometric shape and topology optimization,with a brief coverage of size optimization.For isogeometric shape optimization,attention is focused on the parametrization methods,mesh updating schemes and shape sensitivity analyses.Some interesting observations,e.g.the popularity of using direct(differential)method for shape sensitivity analysis and the possibility of developing a large scale,seamlessly integrated analysis-design platform,are discussed in the framework of isogeometric shape optimization.For isogeometric topology optimization(ITO),we discuss different types of ITOs,e.g.ITO using SIMP(Solid Isotropic Material with Penalization)method,ITO using level set method,ITO using moving morphable com-ponents(MMC),ITO with phase field model,etc.,their technical details and applications such as the spline filter,multi-resolution approach,multi-material problems and stress con-strained problems.In addition to the review in the last 10 years,the current developmental trend of isogeometric structural optimization is discussed.展开更多
This paper presents an analysis of the coupled vibration of asymmetric core structures in tall buildings. The governing equation of free vibration and its corresponding eigenvalue problem, which is a set of equations ...This paper presents an analysis of the coupled vibration of asymmetric core structures in tall buildings. The governing equation of free vibration and its corresponding eigenvalue problem, which is a set of equations for laterally flexural vibrations in two different directions coupled by a warping-St. Venant torsional vibration, are derived. Based on the Calerkin method, a generalized approximate method is developed for the analysis of coupled vibration and thus proposed for determining the natural frequencies and mode shapes of the structure in triply-coupled vibration. The results of the proposed method for the example structure show good agreement with those of the FEM analysis. The proposed method has been shown to provide a simple and rapid, yet accurate, means for coupled vibration analysis of core structures.展开更多
With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A ...With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A sequential two-level optimum algorithm is developed based on the design variable gradation. On the basis of the finite element method, the sensitivity of the objective function and nodal displacement is analyzed. As an example, the BZ281 oil storage offshore platform, which ties in the Bohai oil field, is designed with the shape optimum model. The results are compared with the cross-section optimum design. The tendency of design variables and its reasons in the two methods are analyzed. In the shape optimum design, the value of objective function is obviously smaller than that of the initial design and the cross-section optimum design. Therefore, the advantage of structure shape optimum design for jacket platforms is remarkable.展开更多
1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness ...1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.展开更多
输电塔主材改用复合材料,可有效减少输电线路占地,并减少电气间距达到压缩走廊的目的。复合材料区别于角钢,可以使用D字型截面,提高了截面惯性抵抗矩。对各规格复合材料构件的截面进行了有限元分析,计算得到了截面特性参数。以某110 k ...输电塔主材改用复合材料,可有效减少输电线路占地,并减少电气间距达到压缩走廊的目的。复合材料区别于角钢,可以使用D字型截面,提高了截面惯性抵抗矩。对各规格复合材料构件的截面进行了有限元分析,计算得到了截面特性参数。以某110 k V塔头复合材料塔为工程背景,建立了有限元模型,获得了其自振特性并与传统角钢塔做了对比,分析了参数不同的原因。使用基于时域法的风振系数计算,对位移均方根值、位移平均值、加速度均方根值的分布特点进行了研究,计算了各高度处的风振系数,并将结果与我国规范的取值进行了对比,结果可作为复合塔抗风设计的参考。展开更多
基金This work was supported by National Natural Science Foundation of China(51705158)the Fundamental Research Funds for the Central Universities(2018MS45)Open Funds of National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials(2018005).
文摘Isogeometric analysis(IGA),an approach that integrates CAE into conventional CAD design tools,has been used in structural optimization for 10 years,with plenty of excellent research results.This paper provides a comprehensive review on isogeometric shape and topology optimization,with a brief coverage of size optimization.For isogeometric shape optimization,attention is focused on the parametrization methods,mesh updating schemes and shape sensitivity analyses.Some interesting observations,e.g.the popularity of using direct(differential)method for shape sensitivity analysis and the possibility of developing a large scale,seamlessly integrated analysis-design platform,are discussed in the framework of isogeometric shape optimization.For isogeometric topology optimization(ITO),we discuss different types of ITOs,e.g.ITO using SIMP(Solid Isotropic Material with Penalization)method,ITO using level set method,ITO using moving morphable com-ponents(MMC),ITO with phase field model,etc.,their technical details and applications such as the spline filter,multi-resolution approach,multi-material problems and stress con-strained problems.In addition to the review in the last 10 years,the current developmental trend of isogeometric structural optimization is discussed.
文摘This paper presents an analysis of the coupled vibration of asymmetric core structures in tall buildings. The governing equation of free vibration and its corresponding eigenvalue problem, which is a set of equations for laterally flexural vibrations in two different directions coupled by a warping-St. Venant torsional vibration, are derived. Based on the Calerkin method, a generalized approximate method is developed for the analysis of coupled vibration and thus proposed for determining the natural frequencies and mode shapes of the structure in triply-coupled vibration. The results of the proposed method for the example structure show good agreement with those of the FEM analysis. The proposed method has been shown to provide a simple and rapid, yet accurate, means for coupled vibration analysis of core structures.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.59895410)
文摘With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A sequential two-level optimum algorithm is developed based on the design variable gradation. On the basis of the finite element method, the sensitivity of the objective function and nodal displacement is analyzed. As an example, the BZ281 oil storage offshore platform, which ties in the Bohai oil field, is designed with the shape optimum model. The results are compared with the cross-section optimum design. The tendency of design variables and its reasons in the two methods are analyzed. In the shape optimum design, the value of objective function is obviously smaller than that of the initial design and the cross-section optimum design. Therefore, the advantage of structure shape optimum design for jacket platforms is remarkable.
基金This paper expands on work conducted during the 2005-2006 summer aca-demic recesses while the author was a visitor at CIMNE(Centro Internacional de Métodos Numéricos en Ingenieria)at Barcelona,SpainThe visits were partly supported by fellowships awarded by the Spanish Ministerio de Educación y Cultura during May-June of those years,and partly by the National Science Foundation under grant High-Fidelity Simulations for Heteroge-neous Civil and Mechanical Systems,CMS-0219422。
文摘1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.
文摘输电塔主材改用复合材料,可有效减少输电线路占地,并减少电气间距达到压缩走廊的目的。复合材料区别于角钢,可以使用D字型截面,提高了截面惯性抵抗矩。对各规格复合材料构件的截面进行了有限元分析,计算得到了截面特性参数。以某110 k V塔头复合材料塔为工程背景,建立了有限元模型,获得了其自振特性并与传统角钢塔做了对比,分析了参数不同的原因。使用基于时域法的风振系数计算,对位移均方根值、位移平均值、加速度均方根值的分布特点进行了研究,计算了各高度处的风振系数,并将结果与我国规范的取值进行了对比,结果可作为复合塔抗风设计的参考。