期刊文献+
共找到3,719篇文章
< 1 2 186 >
每页显示 20 50 100
Benchmarking the composite performance of distinct shapes of ferrometallic gold nanoshells:photothermal cancer therapy 被引量:1
1
作者 Sara I.Abdelsalam Essam T.Abdelwahab +2 位作者 I.M.Eldesoky Ramzy M.Abumandour M.M.Ahmed 《Acta Mechanica Sinica》 2025年第6期3-15,共13页
This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs... This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression. 展开更多
关键词 Peristaltic flow NANofLUID AuNPs MAGNETISM shape factor Gravity Heat transfer Porous medium
原文传递
Study on the formation characteristics of underwater hemispherical shaped charge jet and its penetration performance into concrete 被引量:1
2
作者 Chao Cao Jinxiang Wang +5 位作者 Lingquan Kong Kui Tang Yujie Xiao Yangchen Gu Ming Yang Jian Wang 《Defence Technology(防务技术)》 2025年第5期180-196,共17页
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh... Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water. 展开更多
关键词 shaped charge jet Underwater penetration Formation characteristic Concrete failure
在线阅读 下载PDF
Influences of maximum principal stress direction and cross-section shape on tunnel stability 被引量:1
3
作者 Xuefeng Si Zilong Zhang +4 位作者 Xibing Li Guansheng Yi Yong Luo Lihai Tan Kaifeng Han 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2159-2180,共22页
To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with... To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with rectangular,circular,and D-shaped holes.Asθincreases from 0°to 60°in the rectangular hole,the left failure location shifts from the left corner to the left sidewall,the left corner,and then the floor,while the right failure location shifts from the right corner to the right sidewall,right roof corner,and then the roof.Furthermore,the initial failure vertical stress first decreases and then increases.In comparison,the failure severity in the rectangular hole decreases for variousθvalues as 30°>45°>60°>0°.With increasingθ,the fractal dimension(D)of rock slices first increases and then decreases.For the rectangular and D-shaped holes,whenθ=0°,30°,and 90°,D for the rectangular hole is less than that of the D-shaped hole.Whenθ=45°and 60°,D for the rectangular hole is greater than that of the D-shaped hole.Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas.The failure location rotates with the rotation ofθ,and the failure occurs on the side with a high concentration of compressive stress,while the side with the tensile and compressive stresses remains relatively stable.Therefore,the fundamental reason for the rotation of failure location is the rotation of stress concentration,and the external influencing factor is the rotation ofθ. 展开更多
关键词 Maximum principal stress direction Cross-section shape True-triaxial experiment Failure characteristics Fractal dimension Theoretical analysis
在线阅读 下载PDF
Experimental and numerical investigation of cavity characteristics in behind-armor liquid-filled containers under shaped charge jet impact 被引量:1
4
作者 Shixin Ma Xiangdong Li Lanwei Zhou 《Defence Technology(防务技术)》 2025年第5期242-259,共18页
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ... The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7. 展开更多
关键词 Cavity characteristics shaped charge jet Behind-armor liquid-filled container Impact kinetic energy Hydrodynamic ram
在线阅读 下载PDF
Shape Tailoring of Ultra-thin NdF_(3)Nano-sheets Induced by Varied Temperature
5
作者 GAO Yue LIU Deming +2 位作者 QIN Feng LIU Lei SHEN Dezhen 《发光学报》 北大核心 2025年第12期2265-2271,共7页
Fine tailoring the shape of nanosheets is still a big challenge as the difficult synthesis for highly controlled ultrathin nanosheets.Here we report a facile strategy for tailoring the shape of ultra-thin NdF_(3) nano... Fine tailoring the shape of nanosheets is still a big challenge as the difficult synthesis for highly controlled ultrathin nanosheets.Here we report a facile strategy for tailoring the shape of ultra-thin NdF_(3) nanosheets via a hot injection method.In this method,NdF_(3) nanosheets with only about 2 nm in thickness synthesized first via a hot injection method.The shape of the NdF_(3) nanosheets was able to be tailored from flower-like to the round or the triangular shapes simply by decreasing the reaction temperature from 300℃to 280℃or 260℃.The driven force of the NdF_(3) nanosheets’shape tailoring by the temperature could be that a lower crystal growth rate will guarantee the more stable facets exposed at lower temperature,while under the condition of slow precursor injection,a higher temperature will lead to a further decrease in the crystal growth rate.This shape control method of NdF_(3) nanosheets is highly robust,which could be promoted to other materials. 展开更多
关键词 NANOSHEETS NdF_(3) shape tailoring rare-earth fluorides
在线阅读 下载PDF
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
6
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature
7
作者 Kartikey Shahi Velmurugan Ramachandran +1 位作者 Ranjith Mohan Boomurugan Ramachandran 《Journal of Polymer Materials》 2025年第2期477-496,共20页
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho... A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions. 展开更多
关键词 shape memory polymer composite glass fiber composite shape fixity shape recovery thermomechanical cycle
在线阅读 下载PDF
On shape coexistence and possible shape isomers of nuclei around^(172)Hg
8
作者 Xin Guan Jing Guo +2 位作者 Qi-Wen Sun Bożena Nerlo-Pomorska Krzysztof Pomorski 《Nuclear Science and Techniques》 2025年第7期191-203,共13页
This study explores the phenomenon of shape coexistence in nuclei around^(172)Hg,with a focus on the isotopes^(170)Pt,^(172)Hg,and^(174)Pb,as well as the^(170)Pt to^(180)Pt isotopic chain.Utilizing a macro-microscopic... This study explores the phenomenon of shape coexistence in nuclei around^(172)Hg,with a focus on the isotopes^(170)Pt,^(172)Hg,and^(174)Pb,as well as the^(170)Pt to^(180)Pt isotopic chain.Utilizing a macro-microscopic approach that incorporates the Lublin-Strasbourg Drop model combined with a Yukawa-Folded potential and pairing corrections,we analyze the potential energy surfaces(PESs)to understand the impact of pairing interaction.For^(170)Pt,the PES exhibited a prolate ground state,with additional triaxial and oblate-shaped isomers.In^(172)Hg,the ground-state deformation transitions from triaxial to oblate with increasing pairing interaction,demonstrating its nearlyγ-unstable nature.Three shape isomers(prolate,triaxial,and oblate)were observed,with increased pairing strength leading to the disappearance of the triaxial isomer.^(174)Pb exhibited a prolate ground state that became increasingly spherical with stronger pairing.While shape isomers were present at lower pairing strengths,robust shape coexistence was not observed.For realistic pairing interaction,the ground-state shapes transitioned from prolate in^(170)Pt to a coexistence ofγ-unstable and oblate shapes in^(172)Hg,ultimately approaching spherical symmetry in^(174)Pb.A comparison between Exact and Bardeen-Cooper-Schrieffer(BCS)pairing demonstrated that BCS pairing tends to smooth out shape coexistence and reduce the depth of the shape isomer,leading to less pronounced deformation features.The PESs for even-even^(170)-180 Pt isotopes revealed significant shape evolution.^(170)Pt showed a prolate ground state,whereas^(172)Pt exhibited both triaxial and prolate shape coexistence.In^(174)Pt,the ground state was triaxial,coexisted with a prolate minimum.For^(176)Pt,aγ-unstable ground state coexists with a prolate minimum.By 178 Pt and 180Pt,a dominant prolate minimum emerged.These results highlight the role of shape coexistence andγ-instability in the evolution of nuclear structure,especially in the mid-shell region.These findings highlight the importance of pairing interactions in nuclear deformation and shape coexistence,providing insights into the structural evolution of mid-shell nuclei. 展开更多
关键词 Macro-micro-model shape coexistence shape isomers Exact and BCS pairing solutions
在线阅读 下载PDF
Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics:A Review
9
作者 Junhui Hua Junyuan Xiong +2 位作者 Bo Xu Chong Wang Qingyuan Wang 《Computers, Materials & Continua》 2025年第10期65-88,共24页
Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerfu... Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerful numerical simulation tool,can efficiently resolve the microstructural evolution,multi-field coupling effects,and fracture behavior of SMAs and SMCs.This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs,covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture.Subsequently,it systematically examines the phase field simulations of fracture behaviors in SMAs and SMCs,with particular emphasis on how crystallographic orientation,grain size,and grain boundary properties influence the crack propagation.Additionally,the interplay between martensite transformation and fracture mechanisms is analyzed to provide deeper insights into the material responses under mechanical loading.Finally,the review explores future prospects and emerging trends in phase field simulations of SMA and SMC fracture behavior,along with potential advancements in the fracture phase field method itself,including multi-physics coupling and enhanced computational efficiency for large-scale simulations. 展开更多
关键词 Phase field fracture behavior shape memory alloy shape memory ceramic
在线阅读 下载PDF
Geometric Morphometric Analysis of Body Shape Variation in Glossogobius giuris from Lake Mainit,Agusan del Norte,Philippines
10
作者 Cresencio C.Cabuga,Jr. Ana Marie D.Empeño Jojean Marie D.Pondang 《Research in Ecology》 2025年第2期144-158,共15页
Most fish exhibit remarkable morphological diversity,which is often influenced by genetic variation and ecological pressures.Consequently,these are the outcomes of organisms’responses to their environment.Meanwhile,m... Most fish exhibit remarkable morphological diversity,which is often influenced by genetic variation and ecological pressures.Consequently,these are the outcomes of organisms’responses to their environment.Meanwhile,modern morphometrics can quantify shape variation within species of the same group.This study aims to determine the body shape variation of Glossogobius giuris from Lake Mainit,Agusan Del Norte,Philippines.60 adult,uniform-sized fish samples were collected and subjected to standardized laboratory procedures.Further,the samples were digitized for 16 homologous landmark points and loaded into Symmetry Asymmetry Geometric Data(SAGE)Software.Across the tested factors—individuals,sides,and individual x sides—result shows that shape variations among individuals were highly significant(F=2.1045,p<0.0001),along with among males(F=3.2711,p<0.0001).Females exhibited higher Fluctuating Asymmetry(FA)(F=18.99,p<0.0001)compared to males(F=7.0964,p<0.0001).It suggests morphological shape differences across the sexes,and the shape variation observed could be a response to environmental perturbations.Shape variations were associated with swimming,food hunting,and predator defense.Moreover,Principal Component Analysis(PCA)demonstrates higher scores of FA in females(81.96%)than in males(74.76%).It was noticed that females had a high fluctuating asymmetry.It might be due to various physiological and ecological pressures compared to males.The observed levels of directional and fluctuating asymmetry in males and females,respectively,may indicate sex-linked morphological and developmental processes,which are important to consider in ecological or evolutionary contexts.Thus,utilizing geometric morphometrics can depict subtle differences across the same populations. 展开更多
关键词 Caraga Region Ecology Freshwater Fish Landmarks LIMNOLOGY PHENOTYPES shape Variation
在线阅读 下载PDF
Effect of Annealing on the Shape Memory Effect and Mechanical Properties of Laser Powder Bed Fusion NiTi Alloy
11
作者 Yunting Guo Mengqi Liu +8 位作者 Chaorui Jiang Ruiyao Liu Jundong Zhang Pengwei Sha Hang Li Zhenglei Yu Zhihui Zhang Zezhou Xu Luquan Ren 《Additive Manufacturing Frontiers》 2025年第1期125-135,共11页
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e... The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys. 展开更多
关键词 ANNEALING LPBF-NiTi shape memory effect Mechanical properties PRECIPITATES
在线阅读 下载PDF
Experimental Study on the Coupling Dynamics of Metal Jet,Waves,and Bubble During Underwater Explosion of a Shaped Charge
12
作者 Yu Tian A-Man Zhang +1 位作者 Liu-Yi Xu Fu-Ren Ming 《Engineering》 2025年第7期168-187,共20页
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ... Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation. 展开更多
关键词 shaped charge Underwater explosion Metal jet WAVES BUBBLE Coupling dynamics
在线阅读 下载PDF
Optical transmittance and pulse shape discrimination of polystyrene/poly(methyl methacrylate)-based plastic scintillators
13
作者 Yi-Yao Liang Ying-Du Liu +2 位作者 Pu-Sen Wang Jie Bao Xiao-Ping Ouyang 《Nuclear Science and Techniques》 2025年第1期94-102,共9页
Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMM... Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields. 展开更多
关键词 Neutron detection Plastic scintillation Pulse shape discrimination Polymethyl-methacrylate POLYSTYRENE
在线阅读 下载PDF
Simulation and experimental study on the use of shaped charge jet as transient antennas for radiating electromagnetic pulses
14
作者 Jiahui Guo Bin Ma +2 位作者 Zhengxiang Huang Yong Peng Xin Jia 《Defence Technology(防务技术)》 2025年第5期260-274,共15页
In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a tran... In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna. 展开更多
关键词 shaped charge Transient antenna Electromagnetic pulse Radiated power Reconfigurable antenna
在线阅读 下载PDF
Design,Analysis and Prototype Testing of a Non-explosive Self-deploying Wing Actuated by NiTi Shape Memory Alloy Wires
15
作者 Bin Huang Jun Wang +2 位作者 Xiaojun Gu Jihong Zhu Weihong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第3期229-242,共14页
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me... This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints. 展开更多
关键词 Folding wing shape memory alloy Cruise missile Explosion overload ACTUATION
在线阅读 下载PDF
Shape transformation of vesicles induced by orientational arrangement of membrane proteins
16
作者 Menglong Feng Kunhao Dong +1 位作者 Yuansheng Cao Rui Ma 《Chinese Physics B》 2025年第8期73-81,共9页
Vesicles of lipid bilayer can adopt a variety of shapes due to different coating proteins.The ability of proteins to reshape membrane is typically characterized by inducing spontaneous curvature of the membrane at the... Vesicles of lipid bilayer can adopt a variety of shapes due to different coating proteins.The ability of proteins to reshape membrane is typically characterized by inducing spontaneous curvature of the membrane at the coated area.BAR family proteins are known to have a crescent shape and can induce membrane curvature along their concaved body axis but not in the perpendicular direction.We model this type of proteins as a rod-shaped molecule with an orientation and induce normal curvature along its orientation in the tangential plane of the membrane surface.We show how a ring of these proteins reshapes an axisymmetric vesicle when the protein curvature or orientation is varied.A discontinuous shape transformation from a protrusion shape without a neck to a one with a neck is found.Increasing the rigidity of the protein ring is able to smooth out the transition.Furthermore,we show that varying the protein orientation is able to induce an hourglass-shaped neck,which is significantly narrower than the reciprocal of the protein curvature.Our results offer a new angle to rationalize the helical structure formed by many proteins that carry out membrane fission functions. 展开更多
关键词 cell membrane BAR proteins anisotropic curvature shape transformation
原文传递
Collaborative Improvement of Structure Shape and Surface Integrity in Titanium Alloy Hole Burnishing
17
作者 Jiahui Liu Pingfa Feng +3 位作者 Zibiao Wang Jianfu Zhang Feng Feng Xiangyu Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期186-205,共20页
In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and ... In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and surface integrity must be considered simultaneously during the enhancement process.The current manufacturing process of hole burnishing has a relatively weak balance between the structure shape and surface integrity;therefore,it is necessary to analyze the mechanism and optimize the parameters to improve the strengthening effect of the holes.In this study,a two-dimensional longitudinal simplified model for the hole burnishing process was established,and the reasons for the surface roughness improvement of the hole wall and material accumulation on the upper surface were analyzed.Experiments were conducted to determine the influence of the burnishing parameters on the structure shape(material accumulation,shape contour,and roundness)and surface integrity(surface roughness,residual stress,and surface hardness),based on the opposite requirements of improving the structure shape and surface integrity for the burnishing depth(BD).The results showed that with an increase in the BD,the structure shape deteriorated,whereas the surface integrity improved.Fatigue behavior verification experiments were conducted,and parameter selection schemes for the collaborative improvement of the structure shape and surface integrity were discussed.For the holes of titanium alloy TB6(Ti-10V-2Fe-3Al),the fatigue life can be increased by 162%when the BD,spindle speed,and feed rate were 0.20 mm,200 r/min,and 0.2 mm/r,respectively. 展开更多
关键词 Hole burnishing Surface roughness Material accumulation Structure shape Titanium alloy Fatigue life
在线阅读 下载PDF
Accurate restricted transition-state shape selective hydrogenation of furfural over zeolite confined Cu catalyst
18
作者 Wanying Liang Guangyue Xu Yao Fu 《Chinese Journal of Catalysis》 2025年第7期71-81,共11页
Transition-state shape selectivity plays a crucial role in catalytic systems where reactants and products exhibit comparable molecular dimensions,as it restricts the accessible configuration space of reaction intermed... Transition-state shape selectivity plays a crucial role in catalytic systems where reactants and products exhibit comparable molecular dimensions,as it restricts the accessible configuration space of reaction intermediates.Herein,we designed a Cu@MFI catalyst by encapsulating Cu active sites within the well-defined micropores of MFI zeolite through a pore confinement strategy.This architecture preserves the zeolite framework integrity while maintaining unhindered internal mass transport,thereby enabling precise spatial control over transition-state configurations.Employing furfural hydrogenation as a probe reaction,the metal-zeolite synergy in Cu@MFI endowed the catalyst with exceptional activity(100%furfural conversion)and quantitative selectivity(100%furfuryl alcohol)at 70℃,sustained across a broad temperature window.Mechanistic studies reveal that the transition-state shape selectivity effectively prevented H2O interaction with the furan ring,offering valuable insights for other reaction systems seeking to exploit shape selectivity for specific transformations. 展开更多
关键词 Biomass Cu@MFI catalyst Transition-state shape selectivity Furfural hydrogenation Metal-zeolite synergy
在线阅读 下载PDF
Genome-wide association mapping of seed shape-related traits in cotton using SSR markers
19
作者 SIDDHO Irfan Ali ZHANG Zixin +8 位作者 HAN Peng DING Shugen XU Lin ABUDUKEYOUMU Abudurezike AYYAZ Muhammad LI Zhibo LIN Hairong WU Yuanlong NIE Xinhui 《Journal of Cotton Research》 2025年第3期377-388,共12页
Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with ... Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production. 展开更多
关键词 QTL Seed shape Marker-Assisted Breeding COTTON SSR Markers Genome-wide association analysis Genetic Improvement
在线阅读 下载PDF
Tuning the laser-dressed attosecond transient absorption spectra of a singly excited helium state using a shaped attosecond pulse with a spectral minimum
20
作者 Yong Fu Feier Xu Cheng Jin 《Chinese Physics B》 2025年第6期138-145,共8页
The attosecond extreme ultraviolet(XUV) pulse pump and femtosecond infrared(IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption(ATA) spectra of microscopic systems. In a r... The attosecond extreme ultraviolet(XUV) pulse pump and femtosecond infrared(IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption(ATA) spectra of microscopic systems. In a recent report [Proc. Natl. Acad. Sci. USA 121 e2307836121(2024)], we showed that shaped XUV pulses with spectral minima can significantly alter the absorption line shape of helium's 2s2p doubly excited state within a few tens of attoseconds.However, it remains unclear if similar effects could be observed in a singly excited state. In this study, we use shaped XUV pulses to excite helium's 2p singly excited state and couple the 2p and 3d states with a delayed IR pulse. Comparing these results with those from Gaussian XUV pulses, we find that the ATA spectra for the shaped XUV pulses exhibit more pronounced changes with delay, while the changes for the Gaussian pulses are gradual. We also explain these differences through population changes and analytical models. Our findings show that shaped XUV pulses can regulate the dynamics and absorption spectra of a singly excited state. 展开更多
关键词 attosecond transient absorption electron dynamics spectral minima line shape
原文传递
上一页 1 2 186 下一页 到第
使用帮助 返回顶部