A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming par...A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.展开更多
Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull st...Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.展开更多
Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the...Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.展开更多
A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.I...A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.展开更多
Research on the laws controlling the shoreline equilibrium shape has been one important topic of studying the evolvement and stabilization of sandy coasts. After a brief review of the progress on the equilibrium shape...Research on the laws controlling the shoreline equilibrium shape has been one important topic of studying the evolvement and stabilization of sandy coasts. After a brief review of the progress on the equilibrium shape laws research, five models are introduced in detail. Advantages and disadvantages of these models are then discussed, which leads to the conclusion that the empirical formula integrating with analysis of mechanism should be the future direction of study on the headland-bay equilibrium shape laws. Finally, the importance of the study on the equilibrium shape of headland-bay in China is also discussed.展开更多
Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for a...Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology,the object has to be converted into a solid representation.However,converting a known surface-based geometric representation into a printable representation is essentially a redesign process,and this is especially the case,when its interior material structure needs to be considered.To specify a 3D geometric object that is ready to be digitally manufactured,its representation has to be in a certain volumetric form.In this research,we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects.Like surface-based geometric representation is subtractive manufacturing-friendly,implicitly described geometric objects are additive manufacturing-friendly:implicit shapes are 3D printing ready.The implicit geometric representation allows to combine a geometric shape,material colors,an interior material structure,and other required attributes in one single description as a set of implicit functions,and no conversion is needed.In addition,as implicit objects are typically specified procedurally,very little data is used in their specifications,which makes them particularly useful for design and visualization with modern cloud-based mobile devices,which usually do not have very big storage spaces.Finally,implicit modeling is a design procedure that is parallel computing-friendly,as the design of a complex geometric object can be divided into a set of simple shape-designing tasks,owing to the availability of shape-preserving implicit blending operations.展开更多
Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in s...Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in shape and density distribution for degenerated vertebrae by statistical models,and utilized the specific statistical shape model(SSM)/statistical appearance model(SAM)modes to assess compressive strength and fracture behavior.Highly detailed SSM and SAM were developed based on the 75 L1 vertebrae of elderly men,and their variations in shape and density distribution were quantified with principal component(PC)modes.All vertebrae were classified into mild(n=22),moderate(n=29),and severe(n=24)groups according to the overall degree of degeneration.Quantitative computed tomography-based finite element analysis was used to calculate compressive strength for each L1 vertebra,and the associations between compressive strength and PC modes were evaluated by multivariable linear regression(MLR).Moreover,the distributions of equivalent plastic strain(PEEQ)for the vertebrae assigned with the first modes of SSM and SAM at mean±3SD were investigated.The Leave-One-Out analysis showed that our SSM and SAM had good performance,with mean absolute errors of 0.335±0.084 mm and 64.610±26.620 mg/cm3,respectively.A reasonable accuracy of bone strength prediction was achieved by using four PC modes(SSM 1,SAM 1,SAM 4,and SAM 5)to construct the MLR model.Furthermore,the PEEQ values were more sensitive to degeneration-related variations of density distribution than those of morphology.The density variations may change the deformity type(compression deformity or wedge deformity),which further affects the fracture pattern.Statistical models can identify the morphology and density variations in degenerative vertebrae,and the SSM/SAM modes could be used to assess compressive strength and fracture behavior.The above findings have implications for assisting clinicians in pathological diagnosis,fracture risk assessment,implant design,and preoperative planning.展开更多
Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Auton...Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.展开更多
It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to...It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to understand the relationship between the behavior of the shape actuator and the variation of the strip shape. A numerical model based on the contact element method was proposed for the prediction of strip shape. In this numerical model, the re- lationships between the actuating forces, the roll deflections, the thickness profiles of the entry and exit sides, and the strip shape were considered. The proposed numerical model for strip shape prediction was evaluated by computer simulation and experiment with respect to various AS-U roll and first intermediate roll positions.展开更多
Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on th...Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.展开更多
Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest ...Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.展开更多
Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structur...Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.展开更多
Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pe...Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.展开更多
For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to crea...For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case.展开更多
In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. Th...In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.展开更多
A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement i...A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.展开更多
文摘A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.
基金funded by the International University,VNU-HCM,under grant number T2023-01-BME.
文摘Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
基金supported by the National Basic Research Program of China("973" Program)(2012CB720000)the National Natural Science Foundation of China(11102020)the Program for New Century Excellent Talents in University and Beijing Higher Education Young Elite Teacher Project
文摘Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.
基金21st Century Education Revitalization Project (No.301703201).
文摘A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.
基金the National Natural Science Foundation of China under the contract No. 40576041.
文摘Research on the laws controlling the shoreline equilibrium shape has been one important topic of studying the evolvement and stabilization of sandy coasts. After a brief review of the progress on the equilibrium shape laws research, five models are introduced in detail. Advantages and disadvantages of these models are then discussed, which leads to the conclusion that the empirical formula integrating with analysis of mechanism should be the future direction of study on the headland-bay equilibrium shape laws. Finally, the importance of the study on the equilibrium shape of headland-bay in China is also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.61502402 and 61379080)the Natural Science Foundation of Fujian Province of China(Grant No.2015J05129).
文摘Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology,the object has to be converted into a solid representation.However,converting a known surface-based geometric representation into a printable representation is essentially a redesign process,and this is especially the case,when its interior material structure needs to be considered.To specify a 3D geometric object that is ready to be digitally manufactured,its representation has to be in a certain volumetric form.In this research,we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects.Like surface-based geometric representation is subtractive manufacturing-friendly,implicitly described geometric objects are additive manufacturing-friendly:implicit shapes are 3D printing ready.The implicit geometric representation allows to combine a geometric shape,material colors,an interior material structure,and other required attributes in one single description as a set of implicit functions,and no conversion is needed.In addition,as implicit objects are typically specified procedurally,very little data is used in their specifications,which makes them particularly useful for design and visualization with modern cloud-based mobile devices,which usually do not have very big storage spaces.Finally,implicit modeling is a design procedure that is parallel computing-friendly,as the design of a complex geometric object can be divided into a set of simple shape-designing tasks,owing to the availability of shape-preserving implicit blending operations.
基金supported by the National Natural Science Foundation of China(Grant No.12272029).
文摘Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in shape and density distribution for degenerated vertebrae by statistical models,and utilized the specific statistical shape model(SSM)/statistical appearance model(SAM)modes to assess compressive strength and fracture behavior.Highly detailed SSM and SAM were developed based on the 75 L1 vertebrae of elderly men,and their variations in shape and density distribution were quantified with principal component(PC)modes.All vertebrae were classified into mild(n=22),moderate(n=29),and severe(n=24)groups according to the overall degree of degeneration.Quantitative computed tomography-based finite element analysis was used to calculate compressive strength for each L1 vertebra,and the associations between compressive strength and PC modes were evaluated by multivariable linear regression(MLR).Moreover,the distributions of equivalent plastic strain(PEEQ)for the vertebrae assigned with the first modes of SSM and SAM at mean±3SD were investigated.The Leave-One-Out analysis showed that our SSM and SAM had good performance,with mean absolute errors of 0.335±0.084 mm and 64.610±26.620 mg/cm3,respectively.A reasonable accuracy of bone strength prediction was achieved by using four PC modes(SSM 1,SAM 1,SAM 4,and SAM 5)to construct the MLR model.Furthermore,the PEEQ values were more sensitive to degeneration-related variations of density distribution than those of morphology.The density variations may change the deformity type(compression deformity or wedge deformity),which further affects the fracture pattern.Statistical models can identify the morphology and density variations in degenerative vertebrae,and the SSM/SAM modes could be used to assess compressive strength and fracture behavior.The above findings have implications for assisting clinicians in pathological diagnosis,fracture risk assessment,implant design,and preoperative planning.
基金funded by the Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station,China Institute of Water Resources and Hydropower Research(YSS202105)the National Natural Science Foundation of China(52269005)+3 种基金the Inner Mongolia Science and Technology Plan Project(2022YFSH0105)the Central Guidance for Local Science and Technology Development Fund Projects(2024ZY0002)the Inner Mongolia Autonomous Region University Youth Science and Technology Talent Project(NJYT 22037)the Inner Mongolia Agricultural University Young Teachers'Scientific Research Ability Improvement Project(BR220104).
文摘Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.
基金Item Sponsored by Korea Science and Engineering Foundation(KOSEF)Grant Funded by Korea Government(MEST)(2010-0022521)
文摘It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to understand the relationship between the behavior of the shape actuator and the variation of the strip shape. A numerical model based on the contact element method was proposed for the prediction of strip shape. In this numerical model, the re- lationships between the actuating forces, the roll deflections, the thickness profiles of the entry and exit sides, and the strip shape were considered. The proposed numerical model for strip shape prediction was evaluated by computer simulation and experiment with respect to various AS-U roll and first intermediate roll positions.
基金supported by the National Natural Science Foundation of China (51909228)the Postdoctoral Science Foundation of China (2020M671623)the ‘‘Blue Project” of Yangzhou University。
文摘Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.
文摘Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.
文摘Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.
基金supported by the Norwegian Institute of Bioeconomy Research(NIBIO)
文摘Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.
基金the financial support of National Natural Science Foundation of China (no.11502284, 51505483, 11772041)the Fundamental Research Funds for the Central Universities (3122016C006) of China
文摘For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case.
基金supported by PRIN-MIUR-Cofin 2006,project,by"Progetti Strategici EF2006"University of Bologna,and by University of Bologna"Funds for selected research topics"
文摘In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.
基金supported by the Fulbright Colombia-Colciencias Scholarship and Universidad Militar Nueva Granada
文摘A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.