期刊文献+
共找到612篇文章
< 1 2 31 >
每页显示 20 50 100
Ultra-high temperature shape memory in high-Hf content NiTiHf alloys
1
作者 A.V.Shuitcev Q.Z.Li +2 位作者 M.G.Khomutov L Li Y.X.Tong 《Journal of Materials Science & Technology》 2025年第6期124-127,共4页
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t... The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7]. 展开更多
关键词 shape memory alloys smas shape memory alloys ultra high temperature reversible thermoelastic martensitic transformation space industry nitihf alloys
原文传递
Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics:A Review
2
作者 Junhui Hua Junyuan Xiong +2 位作者 Bo Xu Chong Wang Qingyuan Wang 《Computers, Materials & Continua》 2025年第10期65-88,共24页
Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerfu... Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerful numerical simulation tool,can efficiently resolve the microstructural evolution,multi-field coupling effects,and fracture behavior of SMAs and SMCs.This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs,covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture.Subsequently,it systematically examines the phase field simulations of fracture behaviors in SMAs and SMCs,with particular emphasis on how crystallographic orientation,grain size,and grain boundary properties influence the crack propagation.Additionally,the interplay between martensite transformation and fracture mechanisms is analyzed to provide deeper insights into the material responses under mechanical loading.Finally,the review explores future prospects and emerging trends in phase field simulations of SMA and SMC fracture behavior,along with potential advancements in the fracture phase field method itself,including multi-physics coupling and enhanced computational efficiency for large-scale simulations. 展开更多
关键词 Phase field fracture behavior shape memory alloy shape memory ceramic
在线阅读 下载PDF
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
3
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Effect of Annealing on the Shape Memory Effect and Mechanical Properties of Laser Powder Bed Fusion NiTi Alloy
4
作者 Yunting Guo Mengqi Liu +8 位作者 Chaorui Jiang Ruiyao Liu Jundong Zhang Pengwei Sha Hang Li Zhenglei Yu Zhihui Zhang Zezhou Xu Luquan Ren 《Additive Manufacturing Frontiers》 2025年第1期125-135,共11页
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e... The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys. 展开更多
关键词 ANNEALING LPBF-NiTi shape memory effect Mechanical properties PRECIPITATES
在线阅读 下载PDF
Design,Analysis and Prototype Testing of a Non-explosive Self-deploying Wing Actuated by NiTi Shape Memory Alloy Wires
5
作者 Bin Huang Jun Wang +2 位作者 Xiaojun Gu Jihong Zhu Weihong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第3期229-242,共14页
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me... This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints. 展开更多
关键词 Folding wing shape memory alloy Cruise missile Explosion overload ACTUATION
在线阅读 下载PDF
Shape Memory Polymers with Self-folding Deformation and Multi-stimulus Response
6
作者 Lan Zhang Wei Zhang +2 位作者 Qiushi Wang Suqian Ma Xia Yan 《Journal of Bionic Engineering》 2025年第1期238-250,共13页
Shape Memory Polymers(SMPs)need to be given a temporary shape in advance to realize the shape memory process,but the manual shaping process is cumbersome and has low precision.Here,we propose a universal applicable me... Shape Memory Polymers(SMPs)need to be given a temporary shape in advance to realize the shape memory process,but the manual shaping process is cumbersome and has low precision.Here,we propose a universal applicable method for 4D printing self-folding SMPs by pre-stretching extruded filaments during 3D printing,the temporary shape of the SMPs were designed and fixed during 3D printing.Prepared samples can automatically perform shape memory process under stimulation without manual temporary shape programming process.Furthermore,using carbon ink as a photothermal conversion agent enables the 4D printing SMPs to have thermal and light response characteristics.In addition,some bionic applications of self-folding SMPs were demonstrated,such as self-morphing grasper,DNA double helix structures,programmable sequential switching mimosa,self-folding box and human hand.The combination of SMP and 3D printing fully takes advantage of 4D printing technology,and the self-folding SMPs show great potential applications in the fields of tissue engineering scaffold,self-folding robots,self-assembly system and so on. 展开更多
关键词 3D printing 4D printing shape memory Multi-stimulus response Self-folding
在线阅读 下载PDF
Body Temperature Programmable Shape Memory Thermoplastic Rubber
7
作者 Taoxi Wang Zhuo Liu +5 位作者 Fu Jian Xing Shen Chen Wang Huwei Bian Tao Jiang Wei Min Huang 《Journal of Polymer Materials》 2025年第1期81-94,共14页
This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubbe... This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubber(TPR)used in the footwear industry with un-crosslinked polycaprolactone(PCL)to create two samples,namely TP6040 and TP7030.The shape memory behavior,elasticity,and thermo-mechanical response of these rubbers were systematically investigated.The experimental results demonstrated outstanding shape memory performance,with both samples achieving shape fixity ratios(Rf)and shape recovery ratios(R_(r))exceeding 94%.TP6040 exhibited a fitting time of 80 s at body temperature(37℃),indicating a rapid response for shape fixing.The materials also showed good elasticity before and after programming,which is crucial for comfort fitting.These findings suggest that the developed shape memory thermoplastic rubber has potential applications in personalized comfort fitting products,offering advantages over traditional customization techniques in terms of efficiency and cost-effectiveness. 展开更多
关键词 Thermoplastic rubber POLYCAPROLACTONE shape memory polymers body temperature programmable comfort fitting
在线阅读 下载PDF
Dual Cross-linked Eucommia Ulmoides Gum with Reprocessibility,Shape Memory Capability and Broadband Sound Absorption at Low Frequency
8
作者 Qing-Gang Ni Rui Mi +4 位作者 Biao Ou-Yang Jian-Hua Wu Peng Kong You-Ji Li Xiao-Chun Peng 《Chinese Journal of Polymer Science》 2025年第10期1875-1884,共10页
An inverse vulcanized polymer,SZIM combining Zn2+-imidazole coordination bonds and polysulfide bonds was synthesized and incorporated into bio-based Eucommia ulmoides gum (EUG) to generate EUG-SZIM-xs.The residual cry... An inverse vulcanized polymer,SZIM combining Zn2+-imidazole coordination bonds and polysulfide bonds was synthesized and incorporated into bio-based Eucommia ulmoides gum (EUG) to generate EUG-SZIM-xs.The residual crystallinity of the EUG matrix synergistically interacted with the dual cross-linking networks to establish reversible deformation domains,providing EUG-SZIM-xs with quick shape memory capability at moderate temperatures.The damping properties were also investigated,and EUG-SZIM-xs displayed high tanδ values (>0.3) when the SZIM dosage was higher than 5.5 phr,which showed a positive correlation with SZIM concentration.Such good damping performance endowed the EUG-SZIM-xs with broadband low-frequency sound absorption.In addition,the dual cross-linking networks endowed the materials with reprocessability under different catalytic systems,and the 1,8-diazobicyclic[5.4.0]undeca-7-ene (DBU)-catalyzed samples exhibited better mechanical properties than EUG-SZIM-xs. 展开更多
关键词 Eucommia ulmoides gum Inverse vulcanization shape memory capability Reprocessibility Sound absorption
原文传递
Incommensurate modulated structure and its influence on the martensitic transformation temperature span of single phase multielement Ni-Cu-Co-Mn-Ga two-way shape memory single crystals
9
作者 Qijia Yu Yang Liu +5 位作者 Chen Si Wenjia Wang Jiaxi Meng Jingmin Wang Jinghua Liu Chengbao Jiang 《Journal of Materials Science & Technology》 2025年第5期230-240,共11页
Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence ... Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys. 展开更多
关键词 Martensitic transformation Incommensurate modulated structure Temperature span DISLOCATION Two-way shape memory effect
原文传递
Tunable Thermo-Responsive Shape Memory Materials Enabled by Poly(ε-caprolactone)-Poly(2-vinyl)ethylene Glycol Copolymers via Facile Thiol-Ene Photo-Crosslink
10
作者 Ming-Hang Wang Fan Yang Yong-Jian Zhang 《Chinese Journal of Polymer Science》 2025年第2期278-288,共11页
Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this ... Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry. 展开更多
关键词 shape memory polymers POLYCAPROLACTONE Thiol-ene photo-crosslink Controlled crosslinking density Tunable response temperature
原文传递
Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature
11
作者 Kartikey Shahi Velmurugan Ramachandran +1 位作者 Ranjith Mohan Boomurugan Ramachandran 《Journal of Polymer Materials》 2025年第2期477-496,共20页
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho... A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions. 展开更多
关键词 shape memory polymer composite glass fiber composite shape fixity shape recovery thermomechanical cycle
在线阅读 下载PDF
Smart reconfigurable metadevices made of shape memory alloy metamaterials
12
作者 Shiqiang Zhao Yuancheng Fan +6 位作者 Ruisheng Yang Zhehao Ye Fuli Zhang Chen Wang Weijia Luo Yongzheng Wen Ji Zhou 《Opto-Electronic Advances》 2025年第2期6-14,共9页
Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimen... Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.Tunable extraordinary optical transmission like(EOT-like)phenomena have been achieved in the microwave regime using shape memory alloy(SMA).The strongly localized fields generated by designed metadevices,combined with the intense interference of incident waves,enhance transmission through subwavelength apertures.Leveraging the temperature-responsive properties of SMA,the morphology of the metadevice can be recontructed,thereby modifying its response to electromagnetic waves.The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior,achieving a maximum transmission enhancement factor of 126.Furthermore,the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated.The proposed SMA-based metamaterials offer advantages in terms of miniaturization,easy processing,and high design flexibility.They may have potential applications in microwave devices requiring temperature control,such as sensing and monitoring. 展开更多
关键词 METAMATERIALS extraordinary optical transmission shape memory alloy temperature tunability
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
13
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory
14
作者 Nayara Koba de Moura Morgado Guilherme Ferreira de Melo Morgado +1 位作者 Erick Gabriel Ribeiro dos Anjos Fabio Roberto Passador 《Journal of Polymer Materials》 2025年第1期95-110,共16页
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ... The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use. 展开更多
关键词 shape memory polymers poly(lactic acid)(PLA) thermoplastic polyurethane(TPU) carbon nanotubes(CNT) graphene nanoplatelets(GN)
在线阅读 下载PDF
Application of Shape Memory Alloy Torsion Tube in Folding Wingtip Mechanism of Morphing Aircraft
15
作者 LAI Zhenyang WANG Chen +2 位作者 YANG Yang WAN Liliang SHEN Xing 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期78-90,共13页
Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent ... Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips. 展开更多
关键词 morphing aircraft folding wingtip shape memory alloy torsion tubes
在线阅读 下载PDF
Microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with different prestrain levels 被引量:3
16
作者 Y.H.Zhang H.Li +2 位作者 Z.W.Yang X.Liu Q.F.Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期80-93,共14页
Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading... Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions on the evolution of SIMVs is also found herein that deformedβ-Nb inclusions can significantly hinder the growth and recoverability of adjacent stress-induced martensite. 展开更多
关键词 Ni_(47)Ti_(44)Nb_(9)shape memory alloy Wide transformation hysteresis Thermomechanical loading Microstructure evolution shape memory behaviors Stress-induced martensitic transformation Deformation twinning
原文传递
Application of interpolated double network model for carbon nanotube composites in electrothermal shape memory behaviors
17
作者 Ting Fu Zhao Yan +2 位作者 Li Zhang Ran Tao Yiqi Mao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期133-153,共21页
Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design ... Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers. 展开更多
关键词 shape memory polymer composite Viscoplastic constitutive relations Electro-thermomechanics Double network model Multiple shape memory
原文传递
Two-way shape memory effect in a Ti-Zr-Nb-Ta high-temperature shape memory alloy
18
作者 Cheng-Yang Xiong Tuo Li +1 位作者 Jun Wang Yan Li 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1257-1262,共6页
The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase... The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase is not found in Ti-18.5Zr-10Nb-3.5Ta alloy due to the suppressing effect of Ta element.Theα"-martensite laths are found in the transmission electron microscope observation;after the bending deformation,there appear a lot of dislocations.The alloy exhibits a shape memory strain of 3.8%aud a high reverse martensite transformation start temperature of 464 K.The maximum two-way shape memory strain of 1.2%is obtained in the alloy with the prebending training strain of 10%.The mechanism can be ascribed to the effect of internal stress field caused by dislocations. 展开更多
关键词 Ti-Zr shape memory alloys Two-way shape memory effect
原文传递
Three-Dimensional Phase-Field Simulation of Stress-Assisted Two-Way Shape Memory Effect and Its Cyclic Degradation of Single-Crystal NiTi Shape Memory Alloy
19
作者 Bo Xu Chao Yu +2 位作者 Chong Wang Qingyuan Wang Guozheng Kang 《Acta Mechanica Solida Sinica》 CSCD 2024年第6期858-872,共15页
In this work,a three-dimensional crystal-plasticity-based phase-field model considering three kinds of inelastic deformation mechanisms,i.e.,martensitic transformation,dislocation slip in austenite,and dislocation sli... In this work,a three-dimensional crystal-plasticity-based phase-field model considering three kinds of inelastic deformation mechanisms,i.e.,martensitic transformation,dislocation slip in austenite,and dislocation slip in martensite,is established to simulate the stress-assisted two-way shape memory effect(SATWSME)of NiTi single crystals and its cyclic degradation.The simulation results show that the ability of the SATWSME of NiTi single crystal increases as increasing the constant stress in the range discussed in this work(10–100 MPa),which is due to the increase of reoriented martensite formed in the cooling process due to the enhanced variant-selection capability of increased constant stress.The martensitic transformation and its reverse in the cyclic process reflecting the SATWSME show more and more obvious localization characteristics,resulting in the accumulation of significantly heterogeneous plastic deformation(mainly caused by the dislocation slip in austenite),which leads to the cyclic degradation of SATWSME.The simulation results and the conclusions drawn from this work are helpful for further understanding the mechanism of functional cyclic degradation of NiTi alloys. 展开更多
关键词 PHASE-FIELD NiTi shape memory alloy Crystal plasticity Stress-assisted two-way shape memory effect Cyclic degradation
原文传递
Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys 被引量:2
20
作者 Yintao Zhang Daixiu Wei +5 位作者 Yang Chen Lechun Xie Liqiang Wang Lai-Chang Zhang Weijie Lu Guang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期48-63,共16页
Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ... Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials. 展开更多
关键词 shape memory alloys SUPERELASTICITY Gradient porous structure Solution treatment Stable recoverable strain
原文传递
上一页 1 2 31 下一页 到第
使用帮助 返回顶部