Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the pattern...Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.展开更多
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose...Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.展开更多
Non-rigid point matching has received more and more attention.Recently,many works have been developed to discover global relationships in the point set which is treated as an instance of a joint distribution.However,t...Non-rigid point matching has received more and more attention.Recently,many works have been developed to discover global relationships in the point set which is treated as an instance of a joint distribution.However,the local relationship among neighboring points is more effective under non-rigid transformations.Thus,a new algorithm taking advantage of shape context and relaxation labeling technique,called SC-RL,is proposed for non-rigid point matching.It is a strategy that joints estimation for correspondences as well as the transformation.In this work,correspondence assignment is treated as a soft-assign process in which the matching probability is updated by relaxation labeling technique with a newly defined compatibility coefficient.The compatibility coefficient is one or zero depending on whether neighboring points preserving their relative position in a local coordinate system.The comparative analysis has been performed against four state-of-the-art algorithms including SC,ICP,TPS-RPM and RPM-LNS,and the results denote that SC-RL performs better in the presence of deformations,outliers and noise.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 42071450 and 42001415].
文摘Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.
基金supported by the National Natural Science Foundation of China(61773272,61976191)the Six Talent Peaks Project of Jiangsu Province,China(XYDXX-053)Suzhou Research Project of Technical Innovation,Jiangsu,China(SYG201711)。
文摘Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.
基金Project(61002022)supported by the National Natural Science Foundation of ChinaProject(2012M512168)supported by China Postdoctoral Science Foundation
文摘Non-rigid point matching has received more and more attention.Recently,many works have been developed to discover global relationships in the point set which is treated as an instance of a joint distribution.However,the local relationship among neighboring points is more effective under non-rigid transformations.Thus,a new algorithm taking advantage of shape context and relaxation labeling technique,called SC-RL,is proposed for non-rigid point matching.It is a strategy that joints estimation for correspondences as well as the transformation.In this work,correspondence assignment is treated as a soft-assign process in which the matching probability is updated by relaxation labeling technique with a newly defined compatibility coefficient.The compatibility coefficient is one or zero depending on whether neighboring points preserving their relative position in a local coordinate system.The comparative analysis has been performed against four state-of-the-art algorithms including SC,ICP,TPS-RPM and RPM-LNS,and the results denote that SC-RL performs better in the presence of deformations,outliers and noise.