This paper proposes a modified shape coding algorithm called modified vertex based shape coding (MVBSC) to encode the boundary of a visual object compactly by using a modified polygonal approximation approach which u...This paper proposes a modified shape coding algorithm called modified vertex based shape coding (MVBSC) to encode the boundary of a visual object compactly by using a modified polygonal approximation approach which uses modified curvature scale space (CSS) theory to extract feature points.展开更多
In this paper, we propose a new shape-coding algorithm called wavelet-based shape coding (WBSC). Performing wavelet transform on the orientation of original planar curve gives the corners called corner-1 points and en...In this paper, we propose a new shape-coding algorithm called wavelet-based shape coding (WBSC). Performing wavelet transform on the orientation of original planar curve gives the corners called corner-1 points and end of arcs that belong to the original curve. Each arc is represented by a broken line and the corners called corner-2 points of the broken line are extracted. A polygonal approximation of a contour is an ordered list of corner-1 points, ends of arcs and corner-2 points which are extracted by using the above algorithm. All of the points are called polygonal vertices which will be compressed by our adaptive arithmetic encoding. Experimental results show that our method reduces code bits by about 26% compared with the context-based arithmetic encoding (CAE) of MPEG-4, and the subjective quality of the reconstructed shape is better than that of CAE at the same Dn.展开更多
Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
文摘This paper proposes a modified shape coding algorithm called modified vertex based shape coding (MVBSC) to encode the boundary of a visual object compactly by using a modified polygonal approximation approach which uses modified curvature scale space (CSS) theory to extract feature points.
文摘In this paper, we propose a new shape-coding algorithm called wavelet-based shape coding (WBSC). Performing wavelet transform on the orientation of original planar curve gives the corners called corner-1 points and end of arcs that belong to the original curve. Each arc is represented by a broken line and the corners called corner-2 points of the broken line are extracted. A polygonal approximation of a contour is an ordered list of corner-1 points, ends of arcs and corner-2 points which are extracted by using the above algorithm. All of the points are called polygonal vertices which will be compressed by our adaptive arithmetic encoding. Experimental results show that our method reduces code bits by about 26% compared with the context-based arithmetic encoding (CAE) of MPEG-4, and the subjective quality of the reconstructed shape is better than that of CAE at the same Dn.
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.